Source code for polarimetry.amplitude.angles

from __future__ import annotations

import sympy as sp
from ampform.kinematics.phasespace import Kallen


[docs]def formulate_scattering_angle( state_id: int, sibling_id: int ) -> tuple[sp.Symbol, sp.acos]: r"""Formulate the scattering angle in the rest frame of the resonance. Compute the :math:`\theta_{ij}` scattering angle as formulated in `Eq (A1) in the DPD paper <https://journals.aps.org/prd/pdf/10.1103/PhysRevD.101.034033#page=9>`_. The angle is that between particle :math:`i` and spectator particle :math:`k` in the rest frame of the isobar resonance :math:`(ij)`. """ if not {state_id, sibling_id} <= {1, 2, 3}: raise ValueError(f"Child IDs need to be one of 1, 2, 3") # pyright: reportUnnecessaryContains=false if {state_id, sibling_id} in {(2, 1), (3, 2), (1, 3)}: raise NotImplementedError( f"Cannot compute scattering angle θ{state_id}{sibling_id}" ) if state_id == sibling_id: raise ValueError(f"IDs of the decay products cannot be equal: {state_id}") symbol = sp.Symbol(Rf"theta_{state_id}{sibling_id}", real=True) spectator_id = next(iter({1, 2, 3} - {state_id, sibling_id})) m0 = sp.Symbol(f"m0", nonnegative=True) mi = sp.Symbol(f"m{state_id}", nonnegative=True) mj = sp.Symbol(f"m{sibling_id}", nonnegative=True) mk = sp.Symbol(f"m{spectator_id}", nonnegative=True) σj = sp.Symbol(f"sigma{sibling_id}", nonnegative=True) σk = sp.Symbol(f"sigma{spectator_id}", nonnegative=True) theta = sp.acos( ( 2 * σk * (σj - mk**2 - mi**2) - (σk + mi**2 - mj**2) * (m0**2 - σk - mk**2) ) / ( sp.sqrt(Kallen(m0**2, mk**2, σk)) * sp.sqrt(Kallen(σk, mi**2, mj**2)) ) ) return symbol, theta
[docs]def formulate_theta_hat_angle( isobar_id: int, aligned_subsystem: int ) -> tuple[sp.Symbol, sp.acos]: r"""Formulate an expression for :math:`\hat\theta_{i(j)}`.""" allowed_ids = {1, 2, 3} if not {isobar_id, aligned_subsystem} <= allowed_ids: raise ValueError( f"Child IDs need to be one of {', '.join(map(str, allowed_ids))}" ) symbol = sp.Symbol(Rf"\hat\theta_{isobar_id}({aligned_subsystem})", real=True) if isobar_id == aligned_subsystem: return symbol, sp.S.Zero if (isobar_id, aligned_subsystem) in {(3, 1), (1, 2), (2, 3)}: remaining_id = next(iter(allowed_ids - {isobar_id, aligned_subsystem})) m0 = sp.Symbol(f"m0", nonnegative=True) mi = sp.Symbol(f"m{isobar_id}", nonnegative=True) mj = sp.Symbol(f"m{aligned_subsystem}", nonnegative=True) σi = sp.Symbol(f"sigma{isobar_id}", nonnegative=True) σj = sp.Symbol(f"sigma{aligned_subsystem}", nonnegative=True) σk = sp.Symbol(f"sigma{remaining_id}", nonnegative=True) theta = sp.acos( ( (m0**2 + mi**2 - σi) * (m0**2 + mj**2 - σj) - 2 * m0**2 * (σk - mi**2 - mj**2) ) / ( sp.sqrt(Kallen(m0**2, mj**2, σj)) * sp.sqrt(Kallen(m0**2, σi, mi**2)) ) ) return symbol, theta _, theta = formulate_theta_hat_angle(aligned_subsystem, isobar_id) return symbol, -theta
[docs]def formulate_zeta_angle( rotated_state: int, aligned_subsystem: int, reference_subsystem: int, ) -> tuple[sp.Symbol, sp.acos]: r"""Formulate an expression for the alignment angle :math:`\zeta^i_{j(k)}`.""" zeta_symbol = sp.Symbol( Rf"\zeta^{rotated_state}_{{{aligned_subsystem}({reference_subsystem})}}", real=True, ) if rotated_state == 0: _, theta = formulate_theta_hat_angle(aligned_subsystem, reference_subsystem) return zeta_symbol, theta if reference_subsystem == 0: _, zeta = formulate_zeta_angle(rotated_state, aligned_subsystem, rotated_state) return zeta_symbol, zeta if aligned_subsystem == reference_subsystem: return zeta_symbol, sp.S.Zero m0, m1, m2, m3 = sp.symbols("m:4", nonnegative=True) σ1, σ2, σ3 = sp.symbols("sigma1:4", nonnegative=True) if (rotated_state, aligned_subsystem, reference_subsystem) == (1, 1, 3): cos_zeta_expr = ( 2 * m1**2 * (σ2 - m0**2 - m2**2) + (m0**2 + m1**2 - σ1) * (σ3 - m1**2 - m2**2) ) / ( sp.sqrt(Kallen(m0**2, m1**2, σ1)) * sp.sqrt(Kallen(σ3, m1**2, m2**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) == (1, 2, 1): cos_zeta_expr = ( 2 * m1**2 * (σ3 - m0**2 - m3**2) + (m0**2 + m1**2 - σ1) * (σ2 - m1**2 - m3**2) ) / ( sp.sqrt(Kallen(m0**2, m1**2, σ1)) * sp.sqrt(Kallen(σ2, m1**2, m3**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) == (2, 2, 1): cos_zeta_expr = ( 2 * m2**2 * (σ3 - m0**2 - m3**2) + (m0**2 + m2**2 - σ2) * (σ1 - m2**2 - m3**2) ) / ( sp.sqrt(Kallen(m0**2, m2**2, σ2)) * sp.sqrt(Kallen(σ1, m2**2, m3**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) == (2, 3, 2): cos_zeta_expr = ( 2 * m2**2 * (σ1 - m0**2 - m1**2) + (m0**2 + m2**2 - σ2) * (σ3 - m2**2 - m1**2) ) / ( sp.sqrt(Kallen(m0**2, m2**2, σ2)) * sp.sqrt(Kallen(σ3, m2**2, m1**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) == (3, 3, 2): cos_zeta_expr = ( 2 * m3**2 * (σ1 - m0**2 - m1**2) + (m0**2 + m3**2 - σ3) * (σ2 - m3**2 - m1**2) ) / ( sp.sqrt(Kallen(m0**2, m3**2, σ3)) * sp.sqrt(Kallen(σ2, m3**2, m1**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) == (3, 1, 3): cos_zeta_expr = ( 2 * m3**2 * (σ2 - m0**2 - m2**2) + (m0**2 + m3**2 - σ3) * (σ1 - m3**2 - m2**2) ) / ( sp.sqrt(Kallen(m0**2, m3**2, σ3)) * sp.sqrt(Kallen(σ1, m3**2, m2**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) in { # Eq (A10) (1, 2, 3), (2, 3, 1), (3, 1, 2), }: create_symbols = lambda i: sp.symbols(f"m{i} sigma{i}", nonnegative=True) mi, σi = create_symbols(rotated_state) mj, σj = create_symbols(aligned_subsystem) mk, σk = create_symbols(reference_subsystem) cos_zeta_expr = ( 2 * mi**2 * (mj**2 + mk**2 - σi) + (σj - mi**2 - mk**2) * (σk - mi**2 - mj**2) ) / ( sp.sqrt(Kallen(σj, mk**2, mi**2)) * sp.sqrt(Kallen(σk, mi**2, mj**2)) ) return zeta_symbol, sp.acos(cos_zeta_expr) if (rotated_state, aligned_subsystem, reference_subsystem) in { (1, 3, 1), (2, 1, 2), (3, 2, 3), # Eq (A8) (1, 1, 2), (2, 2, 3), (3, 3, 1), # Eq (A11) (1, 3, 2), (2, 1, 3), (3, 2, 1), }: _, zeta = formulate_zeta_angle( rotated_state, reference_subsystem, aligned_subsystem ) return zeta_symbol, -zeta raise NotImplementedError( "No expression for" f" ζ^{rotated_state}_{aligned_subsystem}({reference_subsystem})" )