Cross-check with LHCb data
Contents
2. Cross-check with LHCb data#
Import Python libraries
from __future__ import annotations
import json
import logging
import os
from functools import lru_cache
from textwrap import dedent
import numpy as np
import sympy as sp
from IPython.display import Markdown, Math
from tqdm.auto import tqdm
from polarimetry.amplitude import AmplitudeModel, simplify_latex_rendering
from polarimetry.data import create_data_transformer
from polarimetry.io import (
    as_latex,
    display_latex,
    mute_jax_warnings,
    perform_cached_doit,
    perform_cached_lambdify,
)
from polarimetry.lhcb import (
    get_conversion_factor,
    get_conversion_factor_ls,
    load_model,
    load_model_builder,
    parameter_key_to_symbol,
)
from polarimetry.lhcb.particle import load_particles
@lru_cache(maxsize=None)
def load_model_cached(model_id: int | str) -> AmplitudeModel:
    return load_model(MODEL_FILE, PARTICLES, model_id)
mute_jax_warnings()
simplify_latex_rendering()
NO_TQDM = "EXECUTE_NB" in os.environ
if NO_TQDM:
    logging.getLogger().setLevel(logging.ERROR)
MODEL_FILE = "../data/model-definitions.yaml"
PARTICLES = load_particles("../data/particle-definitions.yaml")
DEFAULT_MODEL = load_model_cached(model_id=0)
2.1. Lineshape comparison#
We compute a few lineshapes for the following point in phase space and compare it with the values from [1]:
Load phase space point
σ1, σ2, σ3 = sp.symbols("sigma1:4", nonnegative=True)
lineshape_vars = crosscheck_data["mainvars"]
lineshape_subs = {
    σ1: lineshape_vars["m2kpi"],
    σ2: lineshape_vars["m2pk"],
    **DEFAULT_MODEL.parameter_defaults,
}
lineshape_vars
{'costhetap': -0.9949949110827053,
 'm2kpi': 0.7980703453578917,
 'm2pk': 3.6486261122281745,
 'phikpi': -0.4,
 'phip': -0.3}
The lineshapes are computed for the following decay chains:
Load selected decay chains
Values for LHCb-PAPER-2022-002
crosscheck_data["lineshapes"]
{'BW_K(892)_p^1_q^0': '(2.1687201455088894+23.58225917009096j)',
 'BW_L(1405)_p^0_q^0': '(-0.5636481410171861+0.13763637759224928j)',
 'BW_L(1690)_p^2_q^1': '(-1.5078327158518026+0.9775036395061584j)'}
Values as computed by this framework
builder = load_model_builder(MODEL_FILE, PARTICLES, model_id=0)
build_dynamics = lambda c: builder.dynamics_choices.get_builder(c)(c)[0].doit()
K892_bw_val = build_dynamics(K892_chain).xreplace(lineshape_subs).n()
L1405_bw_val = build_dynamics(L1405_chain).xreplace(lineshape_subs).n()
L1690_bw_val = build_dynamics(L1690_chain).xreplace(lineshape_subs).n()
display_latex([K892_bw_val, L1405_bw_val, L1690_bw_val])
Assert that these values are equal
lineshape_decimals = 13
np.testing.assert_array_almost_equal(
    np.array(list(map(complex, crosscheck_data["lineshapes"].values()))),
    np.array(list(map(complex, [K892_bw_val, L1405_bw_val, L1690_bw_val]))),
    decimal=lineshape_decimals,
)
src = f"""
:::{{tip}}
These values are **equal up to {lineshape_decimals} decimals**.
:::
"""
Markdown(src)
Tip
These values are equal up to 13 decimals.
2.2. Amplitude comparison#
The amplitude for each decay chain and each outer state helicity combination are evaluated on the following point in phase space:
Load phase space point as in DPD coordinates
amplitude_vars = {k: v for k, v in crosscheck_data["chainvars"].items()}
transformer = create_data_transformer(DEFAULT_MODEL)
input_data = {
    str(σ1): amplitude_vars["m2kpi"],
    str(σ2): amplitude_vars["m2pk"],
    str(σ3): amplitude_vars["m2ppi"],
}
input_data = {k: float(v) for k, v in transformer(input_data).items()}
display_latex({sp.Symbol(k): v for k, v in input_data.items()})
Code for creating functions for each sub-amplitude
@lru_cache(maxsize=None)
def create_amplitude_functions(
    model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
    model = load_model(MODEL_FILE, PARTICLES, model_id)
    production_couplings = get_production_couplings(model_id)
    fixed_parameters = {
        s: v
        for s, v in model.parameter_defaults.items()
        if s not in production_couplings
    }
    exprs = formulate_amplitude_expressions(model_id)
    return {
        k: perform_cached_lambdify(
            expr.xreplace(fixed_parameters),
            parameters=production_couplings,
            backend="numpy",
        )
        for k, expr in tqdm(exprs.items(), desc="Performing doit", disable=NO_TQDM)
    }
@lru_cache(maxsize=None)
def formulate_amplitude_expressions(
    model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
    builder = load_model_builder(MODEL_FILE, PARTICLES, model_id)
    half = sp.Rational(1, 2)
    exprs = {
        (λ_Λc, λ_p): builder.formulate_aligned_amplitude(λ_Λc, λ_p, 0, 0)[0]
        for λ_Λc in [-half, +half]
        for λ_p in [-half, +half]
    }
    model = load_model(MODEL_FILE, PARTICLES, model_id)
    return {
        k: perform_cached_doit(expr.doit().xreplace(model.amplitudes))
        for k, expr in tqdm(exprs.items(), desc="Lambdifying", disable=NO_TQDM)
    }
@lru_cache(maxsize=None)
def get_production_couplings(model_id: int | str) -> dict[sp.Indexed, complex]:
    model = load_model(MODEL_FILE, PARTICLES, model_id)
    return {
        symbol: value
        for symbol, value in model.parameter_defaults.items()
        if isinstance(symbol, sp.Indexed)
        if "production" in str(symbol)
    }
Code for creating a comparison table
def plusminus_to_helicity(plusminus: str) -> sp.Rational:
    half = sp.Rational(1, 2)
    if plusminus == "+":
        return +half
    if plusminus == "-":
        return -half
    raise NotImplementedError(plusminus)
def create_comparison_table(
    model_id: int | str, decimals: int | None = None
) -> Markdown:
    min_ls = not is_ls_model(model_id)
    amplitude_funcs = create_amplitude_functions(model_id)
    real_amp_crosscheck = {
        k: v
        for k, v in get_amplitude_crosscheck_data(model_id).items()
        if k.startswith("Ar")
    }
    production_couplings = get_production_couplings(model_id)
    couplings_to_zero = {str(symbol): 0 for symbol in production_couplings}
    src = ""
    if decimals is not None:
        src += dedent(
            f"""
            :::{{tip}}
            Computed amplitudes are equal to LHCb amplitudes up to **{decimals} decimals**.
            :::
            """
        )
    src += dedent(
        """
        |     | Computed | Expected | Difference |
        | ---:| --------:| --------:| ----------:|
        """
    )
    for i, (amp_identifier, entry) in enumerate(real_amp_crosscheck.items()):
        coupling = parameter_key_to_symbol(
            amp_identifier.replace("Ar", "A"),
            min_ls,
            particle_definitions=PARTICLES,
        )
        src += f"| **`{amp_identifier}`** | ${sp.latex(coupling)}$ |\n"
        for matrix_key, expected in entry.items():
            matrix_suffix = matrix_key[1:]  # ++, +-, -+, --
            λ_Λc, λ_p = map(plusminus_to_helicity, matrix_suffix)
            func = amplitude_funcs[(λ_Λc, -λ_p)]
            func.update_parameters(couplings_to_zero)
            func.update_parameters({str(coupling): 1})
            computed = complex(func(input_data))
            computed *= determine_conversion_factor(coupling, λ_p, min_ls)
            expected = complex(expected)
            if abs(expected) != 0.0:
                diff = abs(computed - expected) / abs(expected)
                if diff < 1e-6:
                    diff = f"{diff:.2e}"
                else:
                    diff = f'<span style="color:red;">{diff:.2e}</span>'
            else:
                diff = ""
            src += (
                f"| `{matrix_key}` | {computed:>.6f} | {expected:>.6f} | {diff} |\n"
            )
            if decimals is not None:
                np.testing.assert_array_almost_equal(
                    computed,
                    expected,
                    decimal=decimals,
                    err_msg=f"  {amp_identifier} {matrix_key}",
                )
    return Markdown(src)
def determine_conversion_factor(
    coupling: sp.Indexed, λ_p: sp.Rational, min_ls: bool
) -> int:
    resonance_name = coupling.indices[0]
    resonance = PARTICLES[str(resonance_name)]
    if min_ls:
        factor = get_conversion_factor(resonance)
    else:
        _, L, S = coupling.indices
        factor = get_conversion_factor_ls(resonance, L, S)
    half = sp.Rational(1, 2)
    factor *= int((-1) ** (half + λ_p))  # # additional sign flip for amplitude
    return factor
def is_ls_model(model_id: int | str) -> bool:
    if isinstance(model_id, int):
        return model_id == 17
    return "LS couplings" in model_id
def get_amplitude_crosscheck_data(model_id: int | str) -> dict[str, complex]:
    if is_ls_model(model_id):
        return crosscheck_data["chains_LS"]
    return crosscheck_data["chains"]
2.2.1. Default model#
Show code cell source
create_comparison_table(model_id=0, decimals=13)
Show code cell output
Tip
Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.
| Computed | Expected | Difference | |
|---|---|---|---|
| 
 | \(\mathcal{H}^\mathrm{production}_{D(1232), - \frac{1}{2}, 0}\) | ||
| 
 | -0.488498+0.517710j | -0.488498+0.517710j | 3.08e-14 | 
| 
 | 0.894898-0.948412j | 0.894898-0.948412j | 7.14e-15 | 
| 
 | 0.121490-0.128755j | 0.121490-0.128755j | 1.80e-14 | 
| 
 | -0.222563+0.235872j | -0.222563+0.235872j | 6.36e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{D(1232), \frac{1}{2}, 0}\) | ||
| 
 | -0.222563+0.235872j | -0.222563+0.235872j | 6.36e-15 | 
| 
 | -0.121490+0.128755j | -0.121490+0.128755j | 1.80e-14 | 
| 
 | -0.894898+0.948412j | -0.894898+0.948412j | 7.14e-15 | 
| 
 | -0.488498+0.517710j | -0.488498+0.517710j | 3.08e-14 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{D(1600), - \frac{1}{2}, 0}\) | ||
| 
 | 0.289160+0.081910j | 0.289160+0.081910j | 3.07e-14 | 
| 
 | -0.529724-0.150054j | -0.529724-0.150054j | 6.87e-15 | 
| 
 | -0.071915-0.020371j | -0.071915-0.020371j | 1.80e-14 | 
| 
 | 0.131743+0.037319j | 0.131743+0.037319j | 5.91e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{D(1600), \frac{1}{2}, 0}\) | ||
| 
 | 0.131743+0.037319j | 0.131743+0.037319j | 5.91e-15 | 
| 
 | 0.071915+0.020371j | 0.071915+0.020371j | 1.80e-14 | 
| 
 | 0.529724+0.150054j | 0.529724+0.150054j | 6.87e-15 | 
| 
 | 0.289160+0.081910j | 0.289160+0.081910j | 3.07e-14 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{D(1700), - \frac{1}{2}, 0}\) | ||
| 
 | -0.018885-0.001757j | -0.018885-0.001757j | 3.20e-13 | 
| 
 | 0.315695+0.029366j | 0.315695+0.029366j | 2.00e-14 | 
| 
 | 0.004697+0.000437j | 0.004697+0.000437j | 3.34e-13 | 
| 
 | -0.078514-0.007303j | -0.078514-0.007303j | 6.86e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{D(1700), \frac{1}{2}, 0}\) | ||
| 
 | 0.078514+0.007303j | 0.078514+0.007303j | 6.86e-15 | 
| 
 | 0.004697+0.000437j | 0.004697+0.000437j | 3.34e-13 | 
| 
 | 0.315695+0.029366j | 0.315695+0.029366j | 2.00e-14 | 
| 
 | 0.018885+0.001757j | 0.018885+0.001757j | 3.20e-13 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{K(892), 0, - \frac{1}{2}}\) | ||
| 
 | -0.537695-5.846793j | -0.537695-5.846793j | 4.88e-15 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | \(\mathcal{H}^\mathrm{production}_{K(892), -1, - \frac{1}{2}}\) | ||
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 1.485636+16.154534j | 1.485636+16.154534j | 3.42e-15 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | \(\mathcal{H}^\mathrm{production}_{K(892), 1, \frac{1}{2}}\) | ||
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -1.485636-16.154534j | -1.485636-16.154534j | 3.32e-15 | 
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | \(\mathcal{H}^\mathrm{production}_{K(892), 0, \frac{1}{2}}\) | ||
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.537695-5.846793j | -0.537695-5.846793j | 4.88e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{K(1430), 0, \frac{1}{2}}\) | ||
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.909456+0.072819j | 0.909456+0.072819j | 1.37e-16 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{K(1430), 0, - \frac{1}{2}}\) | ||
| 
 | 0.909456+0.072819j | 0.909456+0.072819j | 1.37e-16 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | \(\mathcal{H}^\mathrm{production}_{K(700), 0, \frac{1}{2}}\) | ||
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -1.708879+3.380634j | -1.708879+3.380634j | 4.97e-16 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{K(700), 0, - \frac{1}{2}}\) | ||
| 
 | -1.708879+3.380634j | -1.708879+3.380634j | 4.97e-16 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1405), - \frac{1}{2}, 0}\) | ||
| 
 | -0.412613+0.100755j | -0.412613+0.100755j | 1.49e-15 | 
| 
 | -0.256372+0.062603j | -0.256372+0.062603j | 3.27e-15 | 
| 
 | -0.242818+0.059293j | -0.242818+0.059293j | 1.30e-15 | 
| 
 | -0.150872+0.036841j | -0.150872+0.036841j | 3.42e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1405), \frac{1}{2}, 0}\) | ||
| 
 | -0.150872+0.036841j | -0.150872+0.036841j | 3.42e-15 | 
| 
 | 0.242818-0.059293j | 0.242818-0.059293j | 1.30e-15 | 
| 
 | 0.256372-0.062603j | 0.256372-0.062603j | 3.27e-15 | 
| 
 | -0.412613+0.100755j | -0.412613+0.100755j | 1.49e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1520), - \frac{1}{2}, 0}\) | ||
| 
 | 0.257632-0.288056j | 0.257632-0.288056j | 1.56e-14 | 
| 
 | 0.731594-0.817988j | 0.731594-0.817988j | 2.29e-14 | 
| 
 | 0.151613-0.169517j | 0.151613-0.169517j | 1.55e-14 | 
| 
 | 0.430534-0.481376j | 0.430534-0.481376j | 2.30e-14 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1520), \frac{1}{2}, 0}\) | ||
| 
 | -0.430534+0.481376j | -0.430534+0.481376j | 2.29e-14 | 
| 
 | 0.151613-0.169517j | 0.151613-0.169517j | 1.55e-14 | 
| 
 | 0.731594-0.817988j | 0.731594-0.817988j | 2.28e-14 | 
| 
 | -0.257632+0.288056j | -0.257632+0.288056j | 1.55e-14 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1600), - \frac{1}{2}, 0}\) | ||
| 
 | -0.385436+0.424707j | -0.385436+0.424707j | 1.35e-15 | 
| 
 | 0.382669-0.421658j | 0.382669-0.421658j | 3.75e-15 | 
| 
 | -0.226825+0.249935j | -0.226825+0.249935j | 1.60e-15 | 
| 
 | 0.225196-0.248141j | 0.225196-0.248141j | 3.56e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1600), \frac{1}{2}, 0}\) | ||
| 
 | -0.225196+0.248141j | -0.225196+0.248141j | 3.60e-15 | 
| 
 | -0.226825+0.249935j | -0.226825+0.249935j | 1.60e-15 | 
| 
 | 0.382669-0.421658j | 0.382669-0.421658j | 3.80e-15 | 
| 
 | 0.385436-0.424707j | 0.385436-0.424707j | 1.44e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1670), - \frac{1}{2}, 0}\) | ||
| 
 | -0.846639+0.064025j | -0.846639+0.064025j | 1.18e-15 | 
| 
 | -0.526049+0.039781j | -0.526049+0.039781j | 3.17e-15 | 
| 
 | -0.498237+0.037678j | -0.498237+0.037678j | 1.11e-15 | 
| 
 | -0.309574+0.023411j | -0.309574+0.023411j | 3.59e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1670), \frac{1}{2}, 0}\) | ||
| 
 | -0.309574+0.023411j | -0.309574+0.023411j | 3.59e-15 | 
| 
 | 0.498237-0.037678j | 0.498237-0.037678j | 1.11e-15 | 
| 
 | 0.526049-0.039781j | 0.526049-0.039781j | 3.17e-15 | 
| 
 | -0.846639+0.064025j | -0.846639+0.064025j | 1.18e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1690), - \frac{1}{2}, 0}\) | ||
| 
 | 0.232446-0.150691j | 0.232446-0.150691j | 1.66e-14 | 
| 
 | 0.660073-0.427915j | 0.660073-0.427915j | 2.37e-14 | 
| 
 | 0.136791-0.088680j | 0.136791-0.088680j | 1.65e-14 | 
| 
 | 0.388445-0.251823j | 0.388445-0.251823j | 2.37e-14 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(1690), \frac{1}{2}, 0}\) | ||
| 
 | -0.388445+0.251823j | -0.388445+0.251823j | 2.36e-14 | 
| 
 | 0.136791-0.088680j | 0.136791-0.088680j | 1.65e-14 | 
| 
 | 0.660073-0.427915j | 0.660073-0.427915j | 2.37e-14 | 
| 
 | -0.232446+0.150691j | -0.232446+0.150691j | 1.66e-14 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(2000), - \frac{1}{2}, 0}\) | ||
| 
 | 1.072514+1.195841j | 1.072514+1.195841j | 1.47e-15 | 
| 
 | 0.666394+0.743022j | 0.666394+0.743022j | 2.94e-15 | 
| 
 | 0.631162+0.703738j | 0.631162+0.703738j | 1.34e-15 | 
| 
 | 0.392165+0.437260j | 0.392165+0.437260j | 3.29e-15 | 
| 
 | \(\mathcal{H}^\mathrm{production}_{L(2000), \frac{1}{2}, 0}\) | ||
| 
 | 0.392165+0.437260j | 0.392165+0.437260j | 3.29e-15 | 
| 
 | -0.631162-0.703738j | -0.631162-0.703738j | 1.34e-15 | 
| 
 | -0.666394-0.743022j | -0.666394-0.743022j | 2.94e-15 | 
| 
 | 1.072514+1.195841j | 1.072514+1.195841j | 1.47e-15 | 
2.2.2. LS-model#
Show code cell source
create_comparison_table(
    "Alternative amplitude model obtained using LS couplings",
    decimals=13,
)
Show code cell output
Tip
Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.
| Computed | Expected | Difference | |
|---|---|---|---|
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{D(1232), 1, \frac{3}{2}}\) | ||
| 
 | 0.502796-0.532862j | 0.502796-0.532862j | 1.91e-14 | 
| 
 | -0.546882+0.579585j | -0.546882+0.579585j | 5.18e-15 | 
| 
 | 0.546882-0.579585j | 0.546882-0.579585j | 5.18e-15 | 
| 
 | 0.502796-0.532862j | 0.502796-0.532862j | 1.91e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{D(1232), 2, \frac{3}{2}}\) | ||
| 
 | -0.180489+0.191282j | -0.180489+0.191282j | 5.49e-14 | 
| 
 | 0.689818-0.731068j | 0.689818-0.731068j | 2.43e-15 | 
| 
 | 0.689818-0.731068j | 0.689818-0.731068j | 2.32e-15 | 
| 
 | 0.180489-0.191282j | 0.180489-0.191282j | 5.49e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{D(1600), 1, \frac{3}{2}}\) | ||
| 
 | -0.297624-0.084307j | -0.297624-0.084307j | 1.79e-14 | 
| 
 | 0.323720+0.091699j | 0.323720+0.091699j | 3.99e-15 | 
| 
 | -0.323720-0.091699j | -0.323720-0.091699j | 3.99e-15 | 
| 
 | -0.297624-0.084307j | -0.297624-0.084307j | 1.79e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{D(1600), 2, \frac{3}{2}}\) | ||
| 
 | 0.143541+0.040660j | 0.143541+0.040660j | 5.47e-14 | 
| 
 | -0.548604-0.155402j | -0.548604-0.155402j | 1.92e-15 | 
| 
 | -0.548604-0.155402j | -0.548604-0.155402j | 1.80e-15 | 
| 
 | -0.143541-0.040660j | -0.143541-0.040660j | 5.44e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{D(1700), 1, \frac{3}{2}}\) | ||
| 
 | -0.042164-0.003922j | -0.042164-0.003922j | 1.10e-13 | 
| 
 | -0.226551-0.021074j | -0.226551-0.021074j | 1.42e-14 | 
| 
 | -0.226551-0.021074j | -0.226551-0.021074j | 1.42e-14 | 
| 
 | 0.042164+0.003922j | 0.042164+0.003922j | 1.11e-13 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{D(1700), 2, \frac{3}{2}}\) | ||
| 
 | -0.105349-0.009800j | -0.105349-0.009800j | 5.87e-14 | 
| 
 | 0.336381+0.031290j | 0.336381+0.031290j | 2.29e-14 | 
| 
 | -0.336381-0.031290j | -0.336381-0.031290j | 2.29e-14 | 
| 
 | -0.105349-0.009800j | -0.105349-0.009800j | 5.85e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(892), 0, \frac{1}{2}}\) | ||
| 
 | 0.219513+2.386943j | 0.219513+2.386943j | 4.88e-15 | 
| 
 | -0.857733-9.326825j | -0.857733-9.326825j | 3.64e-15 | 
| 
 | -0.857733-9.326825j | -0.857733-9.326825j | 3.64e-15 | 
| 
 | -0.219513-2.386943j | -0.219513-2.386943j | 4.88e-15 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{1}{2}}\) | ||
| 
 | 0.219549+2.387337j | 0.219549+2.387337j | 7.18e-15 | 
| 
 | -0.857874-9.328364j | -0.857874-9.328364j | 2.84e-15 | 
| 
 | 0.857874+9.328364j | 0.857874+9.328364j | 2.78e-15 | 
| 
 | 0.219549+2.387337j | 0.219549+2.387337j | 7.18e-15 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{3}{2}}\) | ||
| 
 | 0.310489+3.376204j | 0.310489+3.376204j | 4.51e-15 | 
| 
 | 0.606609+6.596150j | 0.606609+6.596150j | 2.78e-15 | 
| 
 | -0.606609-6.596150j | -0.606609-6.596150j | 2.76e-15 | 
| 
 | 0.310489+3.376204j | 0.310489+3.376204j | 4.51e-15 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(892), 2, \frac{3}{2}}\) | ||
| 
 | 0.310629+3.377724j | 0.310629+3.377724j | 1.38e-14 | 
| 
 | 0.606882+6.599119j | 0.606882+6.599119j | 7.79e-15 | 
| 
 | 0.606882+6.599119j | 0.606882+6.599119j | 7.79e-15 | 
| 
 | -0.310629-3.377724j | -0.310629-3.377724j | 1.38e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(1430), 0, \frac{1}{2}}\) | ||
| 
 | 0.643091+0.051436j | 0.643091+0.051436j | 1.29e-16 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.643091+0.051436j | 0.643091+0.051436j | 1.29e-16 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(1430), 1, \frac{1}{2}}\) | ||
| 
 | -0.643091-0.051436j | -0.643091-0.051436j | 2.22e-16 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | 0.643091+0.051436j | 0.643091+0.051436j | 2.22e-16 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(700), 0, \frac{1}{2}}\) | ||
| 
 | -1.070937+2.282902j | -1.070937+2.282902j | 3.94e-16 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -1.070937+2.282902j | -1.070937+2.282902j | 3.94e-16 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{K(700), 1, \frac{1}{2}}\) | ||
| 
 | 1.070937-2.282902j | 1.070937-2.282902j | 4.40e-16 | 
| 
 | 0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -0.000000+0.000000j | 0.000000+0.000000j | |
| 
 | -1.070937+2.282902j | -1.070937+2.282902j | 4.40e-16 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1405), 0, \frac{1}{2}}\) | ||
| 
 | -0.398444+0.097295j | -0.398444+0.097295j | 8.23e-16 | 
| 
 | -0.009584+0.002340j | -0.009584+0.002340j | 7.99e-14 | 
| 
 | 0.009584-0.002340j | 0.009584-0.002340j | 8.05e-14 | 
| 
 | -0.398444+0.097295j | -0.398444+0.097295j | 8.56e-16 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1405), 1, \frac{1}{2}}\) | ||
| 
 | 0.163270-0.039869j | 0.163270-0.039869j | 2.06e-14 | 
| 
 | 0.311387-0.076037j | 0.311387-0.076037j | 2.50e-14 | 
| 
 | 0.311387-0.076037j | 0.311387-0.076037j | 2.50e-14 | 
| 
 | -0.163270+0.039869j | -0.163270+0.039869j | 2.04e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1520), 1, \frac{3}{2}}\) | ||
| 
 | 0.117387-0.135999j | 0.117387-0.135999j | 3.12e-14 | 
| 
 | -0.599627+0.694701j | -0.599627+0.694701j | 1.92e-14 | 
| 
 | -0.599627+0.694701j | -0.599627+0.694701j | 1.92e-14 | 
| 
 | -0.117387+0.135999j | -0.117387+0.135999j | 3.12e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1520), 2, \frac{3}{2}}\) | ||
| 
 | 0.330006-0.382330j | 0.330006-0.382330j | 7.45e-14 | 
| 
 | 0.278127-0.322225j | 0.278127-0.322225j | 7.90e-14 | 
| 
 | -0.278127+0.322225j | -0.278127+0.322225j | 7.90e-14 | 
| 
 | 0.330006-0.382330j | 0.330006-0.382330j | 7.45e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1600), 0, \frac{1}{2}}\) | ||
| 
 | -0.431782+0.475775j | -0.431782+0.475775j | 1.40e-15 | 
| 
 | 0.110199-0.121426j | 0.110199-0.121426j | 9.54e-15 | 
| 
 | 0.110199-0.121426j | 0.110199-0.121426j | 9.90e-15 | 
| 
 | 0.431782-0.475775j | 0.431782-0.475775j | 1.40e-15 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1600), 1, \frac{1}{2}}\) | ||
| 
 | 0.102310-0.112734j | 0.102310-0.112734j | 3.05e-14 | 
| 
 | -0.389148+0.428797j | -0.389148+0.428797j | 2.21e-14 | 
| 
 | 0.389148-0.428797j | 0.389148-0.428797j | 2.22e-14 | 
| 
 | 0.102310-0.112734j | 0.102310-0.112734j | 3.05e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1670), 0, \frac{1}{2}}\) | ||
| 
 | -0.817566+0.061827j | -0.817566+0.061827j | 1.69e-16 | 
| 
 | -0.019666+0.001487j | -0.019666+0.001487j | 7.61e-14 | 
| 
 | 0.019666-0.001487j | 0.019666-0.001487j | 7.62e-14 | 
| 
 | -0.817566+0.061827j | -0.817566+0.061827j | 1.69e-16 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1670), 1, \frac{1}{2}}\) | ||
| 
 | 0.345271-0.026110j | 0.345271-0.026110j | 1.85e-14 | 
| 
 | 0.658498-0.049798j | 0.658498-0.049798j | 2.38e-14 | 
| 
 | 0.658498-0.049798j | 0.658498-0.049798j | 2.39e-14 | 
| 
 | -0.345271+0.026110j | -0.345271+0.026110j | 1.87e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1690), 1, \frac{3}{2}}\) | ||
| 
 | 0.110308-0.071511j | 0.110308-0.071511j | 3.03e-14 | 
| 
 | -0.563468+0.365287j | -0.563468+0.365287j | 1.82e-14 | 
| 
 | -0.563468+0.365287j | -0.563468+0.365287j | 1.83e-14 | 
| 
 | -0.110308+0.071511j | -0.110308+0.071511j | 3.03e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(1690), 2, \frac{3}{2}}\) | ||
| 
 | 0.333287-0.216064j | 0.333287-0.216064j | 7.66e-14 | 
| 
 | 0.280891-0.182097j | 0.280891-0.182097j | 8.10e-14 | 
| 
 | -0.280891+0.182097j | -0.280891+0.182097j | 8.09e-14 | 
| 
 | 0.333287-0.216064j | 0.333287-0.216064j | 7.66e-14 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(2000), 0, \frac{1}{2}}\) | ||
| 
 | 1.036314+1.105950j | 1.036314+1.105950j | 1.14e-15 | 
| 
 | 0.024928+0.026603j | 0.024928+0.026603j | 7.91e-14 | 
| 
 | -0.024928-0.026603j | -0.024928-0.026603j | 7.92e-14 | 
| 
 | 1.036314+1.105950j | 1.036314+1.105950j | 1.14e-15 | 
| 
 | \(\mathcal{H}^\mathrm{LS,production}_{L(2000), 1, \frac{1}{2}}\) | ||
| 
 | -0.529297-0.564863j | -0.529297-0.564863j | 1.86e-14 | 
| 
 | -1.009471-1.077303j | -1.009471-1.077303j | 2.35e-14 | 
| 
 | -1.009471-1.077303j | -1.009471-1.077303j | 2.36e-14 | 
| 
 | 0.529297+0.564863j | 0.529297+0.564863j | 1.86e-14 |