Cross-check with LHCb data
Contents
2. Cross-check with LHCb data#
Import Python libraries
from __future__ import annotations
import json
import logging
import os
from functools import lru_cache
from textwrap import dedent
import numpy as np
import sympy as sp
from IPython.display import Markdown, Math
from tqdm.auto import tqdm
from polarimetry.amplitude import AmplitudeModel, simplify_latex_rendering
from polarimetry.data import create_data_transformer
from polarimetry.io import (
as_latex,
display_latex,
mute_jax_warnings,
perform_cached_doit,
perform_cached_lambdify,
)
from polarimetry.lhcb import (
get_conversion_factor,
get_conversion_factor_ls,
load_model,
load_model_builder,
parameter_key_to_symbol,
)
from polarimetry.lhcb.particle import load_particles
@lru_cache(maxsize=None)
def load_model_cached(model_id: int | str) -> AmplitudeModel:
return load_model(MODEL_FILE, PARTICLES, model_id)
mute_jax_warnings()
simplify_latex_rendering()
NO_TQDM = "EXECUTE_NB" in os.environ
if NO_TQDM:
logging.getLogger().setLevel(logging.ERROR)
MODEL_FILE = "../data/model-definitions.yaml"
PARTICLES = load_particles("../data/particle-definitions.yaml")
DEFAULT_MODEL = load_model_cached(model_id=0)
2.1. Lineshape comparison#
We compute a few lineshapes for the following point in phase space and compare it with the values from [1]:
Load phase space point
σ1, σ2, σ3 = sp.symbols("sigma1:4", nonnegative=True)
lineshape_vars = crosscheck_data["mainvars"]
lineshape_subs = {
σ1: lineshape_vars["m2kpi"],
σ2: lineshape_vars["m2pk"],
**DEFAULT_MODEL.parameter_defaults,
}
lineshape_vars
{'costhetap': -0.9949949110827053,
'm2kpi': 0.7980703453578917,
'm2pk': 3.6486261122281745,
'phikpi': -0.4,
'phip': -0.3}
The lineshapes are computed for the following decay chains:
Load selected decay chains
Values for LHCb-PAPER-2022-002
crosscheck_data["lineshapes"]
{'BW_K(892)_p^1_q^0': '(2.1687201455088894+23.58225917009096j)',
'BW_L(1405)_p^0_q^0': '(-0.5636481410171861+0.13763637759224928j)',
'BW_L(1690)_p^2_q^1': '(-1.5078327158518026+0.9775036395061584j)'}
Values as computed by this framework
builder = load_model_builder(MODEL_FILE, PARTICLES, model_id=0)
build_dynamics = lambda c: builder.dynamics_choices.get_builder(c)(c)[0].doit()
K892_bw_val = build_dynamics(K892_chain).xreplace(lineshape_subs).n()
L1405_bw_val = build_dynamics(L1405_chain).xreplace(lineshape_subs).n()
L1690_bw_val = build_dynamics(L1690_chain).xreplace(lineshape_subs).n()
display_latex([K892_bw_val, L1405_bw_val, L1690_bw_val])
Assert that these values are equal
lineshape_decimals = 13
np.testing.assert_array_almost_equal(
np.array(list(map(complex, crosscheck_data["lineshapes"].values()))),
np.array(list(map(complex, [K892_bw_val, L1405_bw_val, L1690_bw_val]))),
decimal=lineshape_decimals,
)
src = f"""
:::{{tip}}
These values are **equal up to {lineshape_decimals} decimals**.
:::
"""
Markdown(src)
Tip
These values are equal up to 13 decimals.
2.2. Amplitude comparison#
The amplitude for each decay chain and each outer state helicity combination are evaluated on the following point in phase space:
Load phase space point as in DPD coordinates
amplitude_vars = {k: v for k, v in crosscheck_data["chainvars"].items()}
transformer = create_data_transformer(DEFAULT_MODEL)
input_data = {
str(σ1): amplitude_vars["m2kpi"],
str(σ2): amplitude_vars["m2pk"],
str(σ3): amplitude_vars["m2ppi"],
}
input_data = {k: float(v) for k, v in transformer(input_data).items()}
display_latex({sp.Symbol(k): v for k, v in input_data.items()})
Code for creating functions for each sub-amplitude
@lru_cache(maxsize=None)
def create_amplitude_functions(
model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
model = load_model(MODEL_FILE, PARTICLES, model_id)
production_couplings = get_production_couplings(model_id)
fixed_parameters = {
s: v
for s, v in model.parameter_defaults.items()
if s not in production_couplings
}
exprs = formulate_amplitude_expressions(model_id)
return {
k: perform_cached_lambdify(
expr.xreplace(fixed_parameters),
parameters=production_couplings,
backend="numpy",
)
for k, expr in tqdm(exprs.items(), desc="Performing doit", disable=NO_TQDM)
}
@lru_cache(maxsize=None)
def formulate_amplitude_expressions(
model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
builder = load_model_builder(MODEL_FILE, PARTICLES, model_id)
half = sp.Rational(1, 2)
exprs = {
(λ_Λc, λ_p): builder.formulate_aligned_amplitude(λ_Λc, λ_p, 0, 0)[0]
for λ_Λc in [-half, +half]
for λ_p in [-half, +half]
}
model = load_model(MODEL_FILE, PARTICLES, model_id)
return {
k: perform_cached_doit(expr.doit().xreplace(model.amplitudes))
for k, expr in tqdm(exprs.items(), desc="Lambdifying", disable=NO_TQDM)
}
@lru_cache(maxsize=None)
def get_production_couplings(model_id: int | str) -> dict[sp.Indexed, complex]:
model = load_model(MODEL_FILE, PARTICLES, model_id)
return {
symbol: value
for symbol, value in model.parameter_defaults.items()
if isinstance(symbol, sp.Indexed)
if "production" in str(symbol)
}
Code for creating a comparison table
def plusminus_to_helicity(plusminus: str) -> sp.Rational:
half = sp.Rational(1, 2)
if plusminus == "+":
return +half
if plusminus == "-":
return -half
raise NotImplementedError(plusminus)
def create_comparison_table(
model_id: int | str, decimals: int | None = None
) -> Markdown:
min_ls = not is_ls_model(model_id)
amplitude_funcs = create_amplitude_functions(model_id)
real_amp_crosscheck = {
k: v
for k, v in get_amplitude_crosscheck_data(model_id).items()
if k.startswith("Ar")
}
production_couplings = get_production_couplings(model_id)
couplings_to_zero = {str(symbol): 0 for symbol in production_couplings}
src = ""
if decimals is not None:
src += dedent(
f"""
:::{{tip}}
Computed amplitudes are equal to LHCb amplitudes up to **{decimals} decimals**.
:::
"""
)
src += dedent(
"""
| | Computed | Expected | Difference |
| ---:| --------:| --------:| ----------:|
"""
)
for i, (amp_identifier, entry) in enumerate(real_amp_crosscheck.items()):
coupling = parameter_key_to_symbol(
amp_identifier.replace("Ar", "A"),
min_ls,
particle_definitions=PARTICLES,
)
src += f"| **`{amp_identifier}`** | ${sp.latex(coupling)}$ |\n"
for matrix_key, expected in entry.items():
matrix_suffix = matrix_key[1:] # ++, +-, -+, --
λ_Λc, λ_p = map(plusminus_to_helicity, matrix_suffix)
func = amplitude_funcs[(λ_Λc, -λ_p)]
func.update_parameters(couplings_to_zero)
func.update_parameters({str(coupling): 1})
computed = complex(func(input_data))
computed *= determine_conversion_factor(coupling, λ_p, min_ls)
expected = complex(expected)
if abs(expected) != 0.0:
diff = abs(computed - expected) / abs(expected)
if diff < 1e-6:
diff = f"{diff:.2e}"
else:
diff = f'<span style="color:red;">{diff:.2e}</span>'
else:
diff = ""
src += (
f"| `{matrix_key}` | {computed:>.6f} | {expected:>.6f} | {diff} |\n"
)
if decimals is not None:
np.testing.assert_array_almost_equal(
computed,
expected,
decimal=decimals,
err_msg=f" {amp_identifier} {matrix_key}",
)
return Markdown(src)
def determine_conversion_factor(
coupling: sp.Indexed, λ_p: sp.Rational, min_ls: bool
) -> int:
resonance_name = coupling.indices[0]
resonance = PARTICLES[str(resonance_name)]
if min_ls:
factor = get_conversion_factor(resonance)
else:
_, L, S = coupling.indices
factor = get_conversion_factor_ls(resonance, L, S)
half = sp.Rational(1, 2)
factor *= int((-1) ** (half + λ_p)) # # additional sign flip for amplitude
return factor
def is_ls_model(model_id: int | str) -> bool:
if isinstance(model_id, int):
return model_id == 17
return "LS couplings" in model_id
def get_amplitude_crosscheck_data(model_id: int | str) -> dict[str, complex]:
if is_ls_model(model_id):
return crosscheck_data["chains_LS"]
return crosscheck_data["chains"]
2.2.1. Default model#
Show code cell source
create_comparison_table(model_id=0, decimals=13)
Show code cell output
Tip
Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.
Computed |
Expected |
Difference |
|
---|---|---|---|
|
\(\mathcal{H}^\mathrm{production}_{D(1232), - \frac{1}{2}, 0}\) |
||
|
-0.488498+0.517710j |
-0.488498+0.517710j |
3.08e-14 |
|
0.894898-0.948412j |
0.894898-0.948412j |
7.14e-15 |
|
0.121490-0.128755j |
0.121490-0.128755j |
1.80e-14 |
|
-0.222563+0.235872j |
-0.222563+0.235872j |
6.36e-15 |
|
\(\mathcal{H}^\mathrm{production}_{D(1232), \frac{1}{2}, 0}\) |
||
|
-0.222563+0.235872j |
-0.222563+0.235872j |
6.36e-15 |
|
-0.121490+0.128755j |
-0.121490+0.128755j |
1.80e-14 |
|
-0.894898+0.948412j |
-0.894898+0.948412j |
7.14e-15 |
|
-0.488498+0.517710j |
-0.488498+0.517710j |
3.08e-14 |
|
\(\mathcal{H}^\mathrm{production}_{D(1600), - \frac{1}{2}, 0}\) |
||
|
0.289160+0.081910j |
0.289160+0.081910j |
3.07e-14 |
|
-0.529724-0.150054j |
-0.529724-0.150054j |
6.87e-15 |
|
-0.071915-0.020371j |
-0.071915-0.020371j |
1.80e-14 |
|
0.131743+0.037319j |
0.131743+0.037319j |
5.91e-15 |
|
\(\mathcal{H}^\mathrm{production}_{D(1600), \frac{1}{2}, 0}\) |
||
|
0.131743+0.037319j |
0.131743+0.037319j |
5.91e-15 |
|
0.071915+0.020371j |
0.071915+0.020371j |
1.80e-14 |
|
0.529724+0.150054j |
0.529724+0.150054j |
6.87e-15 |
|
0.289160+0.081910j |
0.289160+0.081910j |
3.07e-14 |
|
\(\mathcal{H}^\mathrm{production}_{D(1700), - \frac{1}{2}, 0}\) |
||
|
-0.018885-0.001757j |
-0.018885-0.001757j |
3.20e-13 |
|
0.315695+0.029366j |
0.315695+0.029366j |
2.00e-14 |
|
0.004697+0.000437j |
0.004697+0.000437j |
3.34e-13 |
|
-0.078514-0.007303j |
-0.078514-0.007303j |
6.86e-15 |
|
\(\mathcal{H}^\mathrm{production}_{D(1700), \frac{1}{2}, 0}\) |
||
|
0.078514+0.007303j |
0.078514+0.007303j |
6.86e-15 |
|
0.004697+0.000437j |
0.004697+0.000437j |
3.34e-13 |
|
0.315695+0.029366j |
0.315695+0.029366j |
2.00e-14 |
|
0.018885+0.001757j |
0.018885+0.001757j |
3.20e-13 |
|
\(\mathcal{H}^\mathrm{production}_{K(892), 0, - \frac{1}{2}}\) |
||
|
-0.537695-5.846793j |
-0.537695-5.846793j |
4.88e-15 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(892), -1, - \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
1.485636+16.154534j |
1.485636+16.154534j |
3.42e-15 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(892), 1, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.485636-16.154534j |
-1.485636-16.154534j |
3.32e-15 |
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(892), 0, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.537695-5.846793j |
-0.537695-5.846793j |
4.88e-15 |
|
\(\mathcal{H}^\mathrm{production}_{K(1430), 0, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.909456+0.072819j |
0.909456+0.072819j |
1.37e-16 |
|
\(\mathcal{H}^\mathrm{production}_{K(1430), 0, - \frac{1}{2}}\) |
||
|
0.909456+0.072819j |
0.909456+0.072819j |
1.37e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(700), 0, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.708879+3.380634j |
-1.708879+3.380634j |
4.97e-16 |
|
\(\mathcal{H}^\mathrm{production}_{K(700), 0, - \frac{1}{2}}\) |
||
|
-1.708879+3.380634j |
-1.708879+3.380634j |
4.97e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{L(1405), - \frac{1}{2}, 0}\) |
||
|
-0.412613+0.100755j |
-0.412613+0.100755j |
1.49e-15 |
|
-0.256372+0.062603j |
-0.256372+0.062603j |
3.27e-15 |
|
-0.242818+0.059293j |
-0.242818+0.059293j |
1.30e-15 |
|
-0.150872+0.036841j |
-0.150872+0.036841j |
3.42e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(1405), \frac{1}{2}, 0}\) |
||
|
-0.150872+0.036841j |
-0.150872+0.036841j |
3.42e-15 |
|
0.242818-0.059293j |
0.242818-0.059293j |
1.30e-15 |
|
0.256372-0.062603j |
0.256372-0.062603j |
3.27e-15 |
|
-0.412613+0.100755j |
-0.412613+0.100755j |
1.49e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(1520), - \frac{1}{2}, 0}\) |
||
|
0.257632-0.288056j |
0.257632-0.288056j |
1.56e-14 |
|
0.731594-0.817988j |
0.731594-0.817988j |
2.29e-14 |
|
0.151613-0.169517j |
0.151613-0.169517j |
1.55e-14 |
|
0.430534-0.481376j |
0.430534-0.481376j |
2.30e-14 |
|
\(\mathcal{H}^\mathrm{production}_{L(1520), \frac{1}{2}, 0}\) |
||
|
-0.430534+0.481376j |
-0.430534+0.481376j |
2.29e-14 |
|
0.151613-0.169517j |
0.151613-0.169517j |
1.55e-14 |
|
0.731594-0.817988j |
0.731594-0.817988j |
2.28e-14 |
|
-0.257632+0.288056j |
-0.257632+0.288056j |
1.55e-14 |
|
\(\mathcal{H}^\mathrm{production}_{L(1600), - \frac{1}{2}, 0}\) |
||
|
-0.385436+0.424707j |
-0.385436+0.424707j |
1.35e-15 |
|
0.382669-0.421658j |
0.382669-0.421658j |
3.75e-15 |
|
-0.226825+0.249935j |
-0.226825+0.249935j |
1.60e-15 |
|
0.225196-0.248141j |
0.225196-0.248141j |
3.56e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(1600), \frac{1}{2}, 0}\) |
||
|
-0.225196+0.248141j |
-0.225196+0.248141j |
3.60e-15 |
|
-0.226825+0.249935j |
-0.226825+0.249935j |
1.60e-15 |
|
0.382669-0.421658j |
0.382669-0.421658j |
3.80e-15 |
|
0.385436-0.424707j |
0.385436-0.424707j |
1.44e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(1670), - \frac{1}{2}, 0}\) |
||
|
-0.846639+0.064025j |
-0.846639+0.064025j |
1.18e-15 |
|
-0.526049+0.039781j |
-0.526049+0.039781j |
3.17e-15 |
|
-0.498237+0.037678j |
-0.498237+0.037678j |
1.11e-15 |
|
-0.309574+0.023411j |
-0.309574+0.023411j |
3.59e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(1670), \frac{1}{2}, 0}\) |
||
|
-0.309574+0.023411j |
-0.309574+0.023411j |
3.59e-15 |
|
0.498237-0.037678j |
0.498237-0.037678j |
1.11e-15 |
|
0.526049-0.039781j |
0.526049-0.039781j |
3.17e-15 |
|
-0.846639+0.064025j |
-0.846639+0.064025j |
1.18e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(1690), - \frac{1}{2}, 0}\) |
||
|
0.232446-0.150691j |
0.232446-0.150691j |
1.66e-14 |
|
0.660073-0.427915j |
0.660073-0.427915j |
2.37e-14 |
|
0.136791-0.088680j |
0.136791-0.088680j |
1.65e-14 |
|
0.388445-0.251823j |
0.388445-0.251823j |
2.37e-14 |
|
\(\mathcal{H}^\mathrm{production}_{L(1690), \frac{1}{2}, 0}\) |
||
|
-0.388445+0.251823j |
-0.388445+0.251823j |
2.36e-14 |
|
0.136791-0.088680j |
0.136791-0.088680j |
1.65e-14 |
|
0.660073-0.427915j |
0.660073-0.427915j |
2.37e-14 |
|
-0.232446+0.150691j |
-0.232446+0.150691j |
1.66e-14 |
|
\(\mathcal{H}^\mathrm{production}_{L(2000), - \frac{1}{2}, 0}\) |
||
|
1.072514+1.195841j |
1.072514+1.195841j |
1.47e-15 |
|
0.666394+0.743022j |
0.666394+0.743022j |
2.94e-15 |
|
0.631162+0.703738j |
0.631162+0.703738j |
1.34e-15 |
|
0.392165+0.437260j |
0.392165+0.437260j |
3.29e-15 |
|
\(\mathcal{H}^\mathrm{production}_{L(2000), \frac{1}{2}, 0}\) |
||
|
0.392165+0.437260j |
0.392165+0.437260j |
3.29e-15 |
|
-0.631162-0.703738j |
-0.631162-0.703738j |
1.34e-15 |
|
-0.666394-0.743022j |
-0.666394-0.743022j |
2.94e-15 |
|
1.072514+1.195841j |
1.072514+1.195841j |
1.47e-15 |
2.2.2. LS-model#
Show code cell source
create_comparison_table(
"Alternative amplitude model obtained using LS couplings",
decimals=13,
)
Show code cell output
Tip
Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.
Computed |
Expected |
Difference |
|
---|---|---|---|
|
\(\mathcal{H}^\mathrm{LS,production}_{D(1232), 1, \frac{3}{2}}\) |
||
|
0.502796-0.532862j |
0.502796-0.532862j |
1.91e-14 |
|
-0.546882+0.579585j |
-0.546882+0.579585j |
5.18e-15 |
|
0.546882-0.579585j |
0.546882-0.579585j |
5.18e-15 |
|
0.502796-0.532862j |
0.502796-0.532862j |
1.91e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{D(1232), 2, \frac{3}{2}}\) |
||
|
-0.180489+0.191282j |
-0.180489+0.191282j |
5.49e-14 |
|
0.689818-0.731068j |
0.689818-0.731068j |
2.43e-15 |
|
0.689818-0.731068j |
0.689818-0.731068j |
2.32e-15 |
|
0.180489-0.191282j |
0.180489-0.191282j |
5.49e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{D(1600), 1, \frac{3}{2}}\) |
||
|
-0.297624-0.084307j |
-0.297624-0.084307j |
1.79e-14 |
|
0.323720+0.091699j |
0.323720+0.091699j |
3.99e-15 |
|
-0.323720-0.091699j |
-0.323720-0.091699j |
3.99e-15 |
|
-0.297624-0.084307j |
-0.297624-0.084307j |
1.79e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{D(1600), 2, \frac{3}{2}}\) |
||
|
0.143541+0.040660j |
0.143541+0.040660j |
5.47e-14 |
|
-0.548604-0.155402j |
-0.548604-0.155402j |
1.92e-15 |
|
-0.548604-0.155402j |
-0.548604-0.155402j |
1.80e-15 |
|
-0.143541-0.040660j |
-0.143541-0.040660j |
5.44e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{D(1700), 1, \frac{3}{2}}\) |
||
|
-0.042164-0.003922j |
-0.042164-0.003922j |
1.10e-13 |
|
-0.226551-0.021074j |
-0.226551-0.021074j |
1.42e-14 |
|
-0.226551-0.021074j |
-0.226551-0.021074j |
1.42e-14 |
|
0.042164+0.003922j |
0.042164+0.003922j |
1.11e-13 |
|
\(\mathcal{H}^\mathrm{LS,production}_{D(1700), 2, \frac{3}{2}}\) |
||
|
-0.105349-0.009800j |
-0.105349-0.009800j |
5.87e-14 |
|
0.336381+0.031290j |
0.336381+0.031290j |
2.29e-14 |
|
-0.336381-0.031290j |
-0.336381-0.031290j |
2.29e-14 |
|
-0.105349-0.009800j |
-0.105349-0.009800j |
5.85e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 0, \frac{1}{2}}\) |
||
|
0.219513+2.386943j |
0.219513+2.386943j |
4.88e-15 |
|
-0.857733-9.326825j |
-0.857733-9.326825j |
3.64e-15 |
|
-0.857733-9.326825j |
-0.857733-9.326825j |
3.64e-15 |
|
-0.219513-2.386943j |
-0.219513-2.386943j |
4.88e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{1}{2}}\) |
||
|
0.219549+2.387337j |
0.219549+2.387337j |
7.18e-15 |
|
-0.857874-9.328364j |
-0.857874-9.328364j |
2.84e-15 |
|
0.857874+9.328364j |
0.857874+9.328364j |
2.78e-15 |
|
0.219549+2.387337j |
0.219549+2.387337j |
7.18e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{3}{2}}\) |
||
|
0.310489+3.376204j |
0.310489+3.376204j |
4.51e-15 |
|
0.606609+6.596150j |
0.606609+6.596150j |
2.78e-15 |
|
-0.606609-6.596150j |
-0.606609-6.596150j |
2.76e-15 |
|
0.310489+3.376204j |
0.310489+3.376204j |
4.51e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 2, \frac{3}{2}}\) |
||
|
0.310629+3.377724j |
0.310629+3.377724j |
1.38e-14 |
|
0.606882+6.599119j |
0.606882+6.599119j |
7.79e-15 |
|
0.606882+6.599119j |
0.606882+6.599119j |
7.79e-15 |
|
-0.310629-3.377724j |
-0.310629-3.377724j |
1.38e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(1430), 0, \frac{1}{2}}\) |
||
|
0.643091+0.051436j |
0.643091+0.051436j |
1.29e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.643091+0.051436j |
0.643091+0.051436j |
1.29e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(1430), 1, \frac{1}{2}}\) |
||
|
-0.643091-0.051436j |
-0.643091-0.051436j |
2.22e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.643091+0.051436j |
0.643091+0.051436j |
2.22e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(700), 0, \frac{1}{2}}\) |
||
|
-1.070937+2.282902j |
-1.070937+2.282902j |
3.94e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.070937+2.282902j |
-1.070937+2.282902j |
3.94e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(700), 1, \frac{1}{2}}\) |
||
|
1.070937-2.282902j |
1.070937-2.282902j |
4.40e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.070937+2.282902j |
-1.070937+2.282902j |
4.40e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1405), 0, \frac{1}{2}}\) |
||
|
-0.398444+0.097295j |
-0.398444+0.097295j |
8.23e-16 |
|
-0.009584+0.002340j |
-0.009584+0.002340j |
7.99e-14 |
|
0.009584-0.002340j |
0.009584-0.002340j |
8.05e-14 |
|
-0.398444+0.097295j |
-0.398444+0.097295j |
8.56e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1405), 1, \frac{1}{2}}\) |
||
|
0.163270-0.039869j |
0.163270-0.039869j |
2.06e-14 |
|
0.311387-0.076037j |
0.311387-0.076037j |
2.50e-14 |
|
0.311387-0.076037j |
0.311387-0.076037j |
2.50e-14 |
|
-0.163270+0.039869j |
-0.163270+0.039869j |
2.04e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1520), 1, \frac{3}{2}}\) |
||
|
0.117387-0.135999j |
0.117387-0.135999j |
3.12e-14 |
|
-0.599627+0.694701j |
-0.599627+0.694701j |
1.92e-14 |
|
-0.599627+0.694701j |
-0.599627+0.694701j |
1.92e-14 |
|
-0.117387+0.135999j |
-0.117387+0.135999j |
3.12e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1520), 2, \frac{3}{2}}\) |
||
|
0.330006-0.382330j |
0.330006-0.382330j |
7.45e-14 |
|
0.278127-0.322225j |
0.278127-0.322225j |
7.90e-14 |
|
-0.278127+0.322225j |
-0.278127+0.322225j |
7.90e-14 |
|
0.330006-0.382330j |
0.330006-0.382330j |
7.45e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1600), 0, \frac{1}{2}}\) |
||
|
-0.431782+0.475775j |
-0.431782+0.475775j |
1.40e-15 |
|
0.110199-0.121426j |
0.110199-0.121426j |
9.54e-15 |
|
0.110199-0.121426j |
0.110199-0.121426j |
9.90e-15 |
|
0.431782-0.475775j |
0.431782-0.475775j |
1.40e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1600), 1, \frac{1}{2}}\) |
||
|
0.102310-0.112734j |
0.102310-0.112734j |
3.05e-14 |
|
-0.389148+0.428797j |
-0.389148+0.428797j |
2.21e-14 |
|
0.389148-0.428797j |
0.389148-0.428797j |
2.22e-14 |
|
0.102310-0.112734j |
0.102310-0.112734j |
3.05e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1670), 0, \frac{1}{2}}\) |
||
|
-0.817566+0.061827j |
-0.817566+0.061827j |
1.69e-16 |
|
-0.019666+0.001487j |
-0.019666+0.001487j |
7.61e-14 |
|
0.019666-0.001487j |
0.019666-0.001487j |
7.62e-14 |
|
-0.817566+0.061827j |
-0.817566+0.061827j |
1.69e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1670), 1, \frac{1}{2}}\) |
||
|
0.345271-0.026110j |
0.345271-0.026110j |
1.85e-14 |
|
0.658498-0.049798j |
0.658498-0.049798j |
2.38e-14 |
|
0.658498-0.049798j |
0.658498-0.049798j |
2.39e-14 |
|
-0.345271+0.026110j |
-0.345271+0.026110j |
1.87e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1690), 1, \frac{3}{2}}\) |
||
|
0.110308-0.071511j |
0.110308-0.071511j |
3.03e-14 |
|
-0.563468+0.365287j |
-0.563468+0.365287j |
1.82e-14 |
|
-0.563468+0.365287j |
-0.563468+0.365287j |
1.83e-14 |
|
-0.110308+0.071511j |
-0.110308+0.071511j |
3.03e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(1690), 2, \frac{3}{2}}\) |
||
|
0.333287-0.216064j |
0.333287-0.216064j |
7.66e-14 |
|
0.280891-0.182097j |
0.280891-0.182097j |
8.10e-14 |
|
-0.280891+0.182097j |
-0.280891+0.182097j |
8.09e-14 |
|
0.333287-0.216064j |
0.333287-0.216064j |
7.66e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(2000), 0, \frac{1}{2}}\) |
||
|
1.036314+1.105950j |
1.036314+1.105950j |
1.14e-15 |
|
0.024928+0.026603j |
0.024928+0.026603j |
7.91e-14 |
|
-0.024928-0.026603j |
-0.024928-0.026603j |
7.92e-14 |
|
1.036314+1.105950j |
1.036314+1.105950j |
1.14e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{L(2000), 1, \frac{1}{2}}\) |
||
|
-0.529297-0.564863j |
-0.529297-0.564863j |
1.86e-14 |
|
-1.009471-1.077303j |
-1.009471-1.077303j |
2.35e-14 |
|
-1.009471-1.077303j |
-1.009471-1.077303j |
2.36e-14 |
|
0.529297+0.564863j |
0.529297+0.564863j |
1.86e-14 |