Λ_c polarimetry using the dominant hadronic mode — supplemental material

0.0.9 (18/01/2023 22:58:41)

Mikhail Mikhasenko, Remco de Boer, Miriam Fritsch

Jan 18, 2023

TABLE OF CONTENTS

1	Nominal amplitude model 1.1 Resonances and LS-scheme 1.2 Amplitude 1.3 Parameter definitions	3 7 8
2	Cross-check with LHCb data12.1Lineshape comparison12.2Amplitude comparison1	. 3 .3
3	Intensity distribution23.1Definition of free parameters23.2Distribution23.3Decay rates23.4Dominant decays2	1 1 1 2 1 2 3
4	Polarimeter vector field24.1Dominant contributions24.2Total polarimetry vector field24.3Aligned vector fields per chain2	7 28 29
5	Uncertainties35.1Model loading35.2Statistical uncertainties35.3Systematic uncertainties35.4Uncertainty on polarimetry35.5Decay rates35.6Average polarimetry values45.7Exported distributions4	11 12 13 17 19 10 12
6	Average polarimeter per resonance46.1Computations46.2Result and comparison46.3Distribution analysis4	3 3 5
7	Appendix57.1Dynamics lineshapes57.2DPD angles57.3Phase space sample57.4Alignment consistency57.5Benchmarking57.6Serialization57.7Amplitude model with LS-couplings67.8SU(2) \rightarrow SO(3) homomorphism67.9Determination of polarization67.10Interactive visualization7	11234590340

8 Bibliography

0			
9	polar	Interv	73
	9.1	amplitude	73
	9.2	lhcb	74
	9.3	data	76
	9.4	decay	77
	9.5	dynamics	78
	9.6	function	79
	9.7	io	79
	9.8	plot	80
	9.9	spin	81
Bi	bliogra	phy	83
Ру	thon N	Iodule Index	85
In	dex	8	87

71

DOI 10.48550/arXiv.2301.07010 DOI 10.5281/zenodo.7544989

 Λ_c^+ polarimetry using the dominant hadronic mode The polarimeter vector field for multibody decays of a spin-half baryon is introduced as a generalisation of the baryon asymmetry parameters. Using a recent amplitude analysis of the $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay performed at the LHCb experiment, we compute the distribution of the kinematic-dependent polarimeter vector for this process in the space of Mandelstam variables to express the polarised decay rate in a model-agnostic form. The obtained representation can facilitate polarisation measurements of the Λ_c^+ baryon and eases inclusion of the $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay mode in hadronic amplitude analyses.

This website shows all analysis results that led to the publication of LHCb-PAPER-2022-044. More information on this publication can be found on the following pages:

- Publication on arXiv: arXiv:2301.07010
- Record on CDS: cds.cern.ch/record/2838694
- Record for the source code on Zenodo: 10.5281/zenodo.7544989
- Frozen documentation on GitLab Pages: lc2pkpi-polarimetry.docs.cern.ch
- Frozen repository on CERN GitLab: gitlab.cern.ch/polarimetry/Lc2pKpi
- Active repository on GitHub containing discussions: github.com/ComPWA/polarimetry

Behind SSO login (LHCb members only)

- LHCb TWiki page: twiki.cern.ch/twiki/bin/viewauth/LHCbPhysics/PolarimetryLc2pKpi
- Charm WG meeting: indico.cern.ch/event/1187317
- RC approval presentation: indico.cern.ch/event/1213570
- Silent approval to submit: indico.cern.ch/event/1242323

Note: This document is a PDF rendering of the supplemental material hosted behind SSO-login on lc2pkpi-polarimetry.docs.cern.ch. Go to this webpage for a more extensive and interactive experience.

NOMINAL AMPLITUDE MODEL

1.1 Resonances and LS-scheme

Particle definitions for Λ_c^+ and p,π^+,K^- in the sequential order.

name	LaTeX	J^P	mass (MeV)	width (MeV)
Lambda_c+	Λ_c^+	$\frac{1}{2}^{+}$	2,286	0
р	p	$\frac{1}{2}^{+}$	938	0
pi+	π^+	0-	139	0
K-	K^-	0-	493	0
Sigma-	Σ^{-}	$\frac{1}{2}^+$	1,189	0

Particle definitions as defined in particle-definitions.yaml:

name	LaTeX	J^P	mass (MeV)	width (MeV)
L(1405)	$\Lambda(1405)$	$\frac{1}{2}$	1,405	50
L(1520)	$\Lambda(1520)$	$\frac{3}{2}$	1,519	15
L(1600)	$\Lambda(1600)$	$\frac{1}{2}^{+}$	1,630	250
L(1670)	$\Lambda(1670)$	$\frac{1}{2}$	1,670	30
L(1690)	$\Lambda(1690)$	$\frac{3}{2}$	1,690	70
L(1800)	$\Lambda(1800)$	$\frac{1}{2}$	1,800	300
L(1810)	$\Lambda(1810)$	$\frac{1}{2}^{+}$	1,810	150
L(2000)	$\Lambda(2000)$	$\frac{1}{2}$	2,000	210
D(1232)	$\Delta(1232)$	$\frac{3}{2}^{+}$	1,232	117
D(1600)	$\Delta(1600)$	$\frac{3}{2}^{+}$	1,640	300
D(1620)	$\Delta(1620)$	$\frac{1}{2}$	1,620	130
D(1700)	$\Delta(1700)$	$\frac{3}{2}$	1,690	380
K(700)	K(700)	0^{+}	824	478
K(892)	K(892)	1-	895	47
K(1410)	K(1410)	1-	1,421	236
K(1430)	K(1430)	0^{+}	1,375	190

See also:

Amplitude model with LS-couplings (page 60)

Most models work take the **minimal** L-value in each LS-coupling (only model 17 works in the full LS-basis. The generated LS-couplings look as follows:

Only minimum $L_{S}(12)$	All LS couplings (26)
$\Lambda_c^+ \xrightarrow[S=3/2]{L-1} \Delta(1232) \xrightarrow[S=1/2]{L-1} p\pi^+ K^-$	$\Lambda_c^+ \xrightarrow[S=3/2]{L-1} \Delta(1232) \xrightarrow[S=1/2]{L-1} p\pi^+ K^-$
	$\Lambda_c^+ \xrightarrow{L=2}_{S=3/2} \Delta(1232) \xrightarrow{L=1}_{S=1/2} p\pi^+ K^-$
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Delta(1600) \xrightarrow[S=1/2]{L=1} p\pi^+ K^-$	$\Lambda_c^+ \xrightarrow{L=1}_{S=3/2} \Delta(1600) \xrightarrow{L=1}_{S=1/2} p\pi^+ K^-$
	$\Lambda_c^+ \xrightarrow{L=2}_{S=3/2} \Delta(1600) \xrightarrow{L=1}_{S=1/2} p\pi^+ K^-$
$\Lambda_c^+ \xrightarrow{L=1}_{S=3/2} \Delta(1700) \xrightarrow{L=2}_{S=1/2} p\pi^+ K^-$	$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Delta(1700) \xrightarrow[S=1/2]{L=2} p\pi^+ K^-$
	$\Lambda_c^+ \xrightarrow{L=2}_{S=3/2} \Delta(1700) \xrightarrow{L=2}_{S=1/2} p\pi^+ K^-$
$\Lambda_c^+ \xrightarrow{L=0}_{S=1/2} K(700) \xrightarrow{L=0}_{S=0} \pi^+ K^- p$	$\Lambda_c^+ \xrightarrow{L=0}_{S=1/2} K(700) \xrightarrow{L=0}_{S=0} \pi^+ K^- p$
	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(700) \xrightarrow[S=0]{L=0} \pi^+ K^- p$
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$
	$\Lambda_c^+ \xrightarrow{L=1}_{S=1/2} K(892) \xrightarrow{L=1}_{S=0} \pi^+ K^- p$
	$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$
	$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$
$\Lambda_{c}^{+} \xrightarrow[S=1/2]{L=0} K(1430) \xrightarrow[S=0]{L=0} \pi^{+} K^{-} p$	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(1430) \xrightarrow[S=0]{L=0} \pi^+ K^- p$
	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(1430) \xrightarrow[S=0]{L=0} \pi^+ K^- p$
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1405) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1405) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$
	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1405) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$
$\Lambda_c^+ \xrightarrow{L=1}_{S=3/2} \Lambda(1520) \xrightarrow{L=2}_{S=1/2} K^- p \pi^+$	$\Lambda_c^+ \xrightarrow{L=1}_{S=3/2} \Lambda(1520) \xrightarrow{L=2}_{S=1/2} K^- p \pi^+$
	$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Lambda(1520) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$
$\Lambda_c^+ \xrightarrow{L=0}_{S=1/2} \Lambda(1600) \xrightarrow{L=1}_{S=1/2} K^- p \pi^+$	$\Lambda_c^+ \xrightarrow{L=0}_{S=1/2} \Lambda(1600) \xrightarrow{L=1}_{S=1/2} K^- p \pi^+$
	$\Lambda_c^+ \xrightarrow[S=1/2]{L=1} \Lambda(1600) \xrightarrow[S=1/2]{L=1} K^- p \pi^+$
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1670) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\Lambda_c^+ \xrightarrow{L=0}_{S=1/2} \Lambda(1670) \xrightarrow{L=0}_{S=1/2} K^- p \pi^+$
	$\Lambda_c^+ \xrightarrow{L=1}_{S=1/2} \Lambda(1670) \xrightarrow{L=0}_{S=1/2} K^- p \pi^+$
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Lambda(1690) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$	$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Lambda(1690) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$
	$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Lambda(1690) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(2000) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \overline{\Lambda(2000)} \xrightarrow[S=1/2]{L=0} K^- p \pi^+$
	$ \Lambda_c^+ \xrightarrow{L=1}_{S=1/2} \Lambda(2000) \xrightarrow{L=0}_{S=1/2} K^- p \pi^+ $

Or with J^P -values:

Only minimum LS (12)			All LS-couplings (26)		
$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1}_{S=3/2}$	$\Delta(1232) \left[\frac{3}{2}^+\right]$	$\xrightarrow{L=1}{S=1/2}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \qquad \xrightarrow{L=1}{S=3/2}$	$\Delta(1232) \left[\frac{3}{2}^+\right]$	$\xrightarrow[S=1/2]{L=1}$
$p\left\lfloor \frac{1}{2}^{+}\right\rfloor \pi^{+}\left[0^{-}\right] K^{-}\left[0^{-}\right]$			$p\left\lfloor \frac{1}{2}^{+}\right\rfloor \pi^{+}\left[0^{-}\right] K^{-}\left[0^{-}\right]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \qquad \xrightarrow{L=2}{S=3/2}$	$\Delta(1232) \left[\frac{3}{2}^+\right]$	$\xrightarrow[]{L=1}{S=1/2}$
			$p\left[\frac{1}{2}^{+}\right]\pi^{+}\left[0^{-}\right]K^{-}\left[0^{-}\right]$		
$\boxed{ \Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \qquad \xrightarrow{L=1}{S=3/2} }$	$\Delta(1600) \left[\frac{3}{2}^+\right]$	$\xrightarrow[]{L=1}{S=1/2}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1}_{S=3/2}$	$\Delta(1600) \left[\frac{3}{2}^+\right]$	$\xrightarrow[]{L=1}{S=1/2}$
$p\left[\frac{1}{2}^{+}\right]\pi^{+}\left[0^{-}\right]K^{-}\left[0^{-}\right]$			$p\left[\frac{1}{2}^{+}\right]\pi^{+}[0^{-}]K^{-}[0^{-}]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=2}_{S=3/2}$	$\Delta(1600) \left[\frac{3}{2}^+\right]$	$\xrightarrow[]{L=1}{S=1/2}$
			$p\left\lfloor \frac{1}{2}^{+}\right\rfloor \pi^{+}\left[0^{-}\right] K^{-}\left[0^{-}\right]$		
$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1}{S=3/2}$	$\Delta(1700) \left[\frac{3}{2}^{-}\right]$	$\xrightarrow{L=2}{S=1/2}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \qquad \xrightarrow{L=1}{S=3/2}$	$\Delta(1700) \left[\frac{3}{2}^{-}\right]$	$\xrightarrow{L=2}{S=1/2}$
$p\left\lfloor \frac{1}{2}^{+}\right\rfloor \pi^{+}\left[0^{-}\right] K^{-}\left[0^{-}\right]$			$p\left\lfloor \frac{1}{2}^{+}\right\rfloor \pi^{+}\left[0^{-}\right] K^{-}\left[0^{-}\right]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \qquad \xrightarrow{L=2}_{S=3/2}$	$\Delta(1700) \left[\frac{3}{2}^{-}\right]$	$\xrightarrow{L=2}{S=1/2}$
			$p\left\lfloor \frac{1}{2}^{+}\right\rfloor \pi^{+}\left[0^{-}\right] K^{-}\left[0^{-}\right]$		
$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0} \xrightarrow{S=1/2}$	$K(700)\left[0^+\right]$	$\xrightarrow[S=0]{L=0}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0} \xrightarrow{S=1/2}$	$K(700)\left[0^+\right]$	$\xrightarrow[S=0]{L=0}$
$\pi^+ \begin{bmatrix} 0^- \end{bmatrix} K^- \begin{bmatrix} 0^- \end{bmatrix} p \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix}$			$\pi^+ \begin{bmatrix} 0^- \end{bmatrix} K^- \begin{bmatrix} 0^- \end{bmatrix} p \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix}$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1}_{S=1/2}$	$K(700)\left[0^+\right]$	$\xrightarrow[S=0]{L=0}$
			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0} \xrightarrow{S=1/2}$	$K(892)\left[1^{-}\right]$	$\xrightarrow[S=0]{L=1}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0} \xrightarrow{S=1/2}$	$K(892)\left[1^{-}\right]$	$\xrightarrow[S=0]{L=1}$
$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+}\right]$			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1}_{S=1/2}$	$K(892)\left[1^{-}\right]$	$\xrightarrow[S=0]{L=1}$
			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1} \xrightarrow{S=3/2}$	$K(892)\left[1^{-}\right]$	$\xrightarrow[S=0]{L=1}$
			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=2} \xrightarrow{S=3/2}$	$K(892)\left[1^{-}\right]$	$\xrightarrow[S=0]{L=1}$
			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0} \xrightarrow{S=1/2}$	$K(1430) [0^+]$	$\xrightarrow[S=0]{L=0}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \qquad \xrightarrow{L=0}_{S=1/2}$	$K(1430) [0^+]$	$\xrightarrow[S=0]{L=0}$
$\pi^+ \begin{bmatrix} 0^- \end{bmatrix} K^- \begin{bmatrix} 0^- \end{bmatrix} p \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix}$			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
			$\Lambda_c^+ \begin{bmatrix} \underline{1}^+ \end{bmatrix} \qquad \xrightarrow{L=1}_{S=1/2}$	$K(1430) [0^+]$	$\xrightarrow[S=0]{L=0}$
			$\pi^{+} [0^{-}] K^{-} [0^{-}] p \left[\frac{1}{2}^{+} \right]$		
$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0}_{S=1/2}$	$\Lambda(1405)\left[\frac{1}{2}^{-}\right]$	$\xrightarrow[]{L=0}{S=1/2}$	$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=0}_{S=1/2}$	$\overline{\Lambda(1405)\left[\frac{1}{2}^{-}\right]}$	$\xrightarrow[S=1/2]{L=0}$
$ \begin{bmatrix} K^{-} \left[0^{-} \right] p \left[\frac{1}{2}^{+} \right] \pi^{+} \left[0^{-} \right] $			$K^{-}\left[0^{-}\right]p\left[\frac{1}{2}^{+}\right]\pi^{+}\left[0^{-}\right]$		
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=1}_{S=1/2}$	$\Lambda(1405)\left[\frac{1}{2}^{-}\right]$	$\xrightarrow{L=0}{S=1/2}$
			$K^{-}\left[0^{-}\right]p\left[\frac{1}{2}^{+}\right]\pi^{+}\left[0^{-}\right]$		
$\Lambda_c^+ \begin{bmatrix} 1 \\ 2 \end{bmatrix}^+ \xrightarrow{L=1} \xrightarrow{L=1}$	$\Lambda(1520) \left[\frac{3}{2}^{-}\right]$	$\xrightarrow{L=2}$	$\Lambda_c^+ \begin{bmatrix} 1 \\ 2 \end{bmatrix}^+ \xrightarrow{L=1} \xrightarrow{L=1}$	$\Lambda(1520) \left[\frac{3}{2}^{-}\right]$	$\xrightarrow{L=2}$
$6_{K^{-}[0^{-}]p\left[\frac{1}{2}^{+}\right]\pi^{+}[0^{-}]}^{5=3/2}$		S=1/2	$k^{-}[0^{-}]p \Big _{\frac{1}{2}}^{\overline{S=3/2}} \pi^{+}[0^{-}]$	Nominal amplitue	de model
			$\Lambda_c^+ \begin{bmatrix} \frac{1}{2}^+ \end{bmatrix} \xrightarrow{L=2}_{S=3/2}$	$\Lambda(1520) \left[\frac{3}{2}^{-}\right]$	$\xrightarrow[S=1/2]{L=2}$

1.2 Amplitude

1.2.1 Spin-alignment amplitude

The full intensity of the amplitude model is obtained by summing the following aligned amplitude over all helicity values λ_i in the initial state 0 and final states 1, 2, 3:

$$\sum_{\lambda_{0}^{\prime}=-1/2}^{1/2} \sum_{\lambda_{1}^{\prime}=-1/2}^{1/2} A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{1} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{1(1)}^{1}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{1(1)}^{0}\right) + A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{2} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{2(1)}^{1}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{0}\right) + A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{2} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{2(1)}^{0}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{0}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{$$

Note that we simplified notation here: the amplitude indices for the spinless states are not rendered and their corresponding Wigner-d alignment functions are simply 1.

The relevant $\zeta_{j(k)}^i$ angles are *defined as* (page 52):

$$\begin{array}{rcl} \zeta_{1(1)}^{0} & = & 0 \\ \zeta_{1(1)}^{0} & = & 0 \\ \zeta_{2(1)}^{0} & = & - \arccos \left(\frac{-2m_{0}^{2}(-m_{1}^{2}-m_{2}^{2}+\sigma_{3})+(m_{0}^{2}+m_{1}^{2}-\sigma_{1})(m_{0}^{2}+m_{2}^{2}-\sigma_{2})}{\sqrt{\lambda(m_{0}^{2},m_{2}^{2},\sigma_{2})}\sqrt{\lambda(m_{0}^{2},\sigma_{1},m_{1}^{2})}} \right) \\ \zeta_{2(1)}^{1} & = & \arccos \left(\frac{2m_{1}^{2}(-m_{0}^{2}-m_{3}^{2}+\sigma_{3})+(m_{0}^{2}+m_{1}^{2}-\sigma_{1})(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})}{\sqrt{\lambda(m_{0}^{2},m_{1}^{2},\sigma_{1})}\sqrt{\lambda(\sigma_{2},m_{1}^{2},m_{3}^{2})}} \right) \\ \zeta_{3(1)}^{0} & = & \arccos \left(\frac{-2m_{0}^{2}(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})+(m_{0}^{2}+m_{1}^{2}-\sigma_{1})(m_{0}^{2}+m_{3}^{2}-\sigma_{3})}{\sqrt{\lambda(m_{0}^{2},m_{1}^{2},\sigma_{1})}\sqrt{\lambda(m_{0}^{2},\sigma_{3},m_{3}^{2})}} \right) \\ \zeta_{3(1)}^{1} & = & - \arccos \left(\frac{2m_{1}^{2}(-m_{0}^{2}-m_{2}^{2}+\sigma_{2})+(m_{0}^{2}+m_{1}^{2}-\sigma_{1})(-m_{1}^{2}-m_{2}^{2}+\sigma_{3})}{\sqrt{\lambda(m_{0}^{2},m_{1}^{2},\sigma_{1})}\sqrt{\lambda(\sigma_{3},m_{1}^{2},m_{2}^{2})}} \right) \end{array}$$

1.2.2 Sub-system amplitudes

The θ_{ij} angles are *defined as* (page 52):

$$\begin{array}{lcl} \theta_{23} & = & \operatorname*{acos} \left(\frac{2\sigma_1(-m_1^2 - m_2^2 + \sigma_3) - (m_0^2 - m_1^2 - \sigma_1)(m_2^2 - m_3^2 + \sigma_1)}{\sqrt{\lambda(m_0^2, m_1^2, \sigma_1)}\sqrt{\lambda(\sigma_1, m_2^2, m_3^2)}} \right) \\ \theta_{31} & = & \operatorname*{acos} \left(\frac{2\sigma_2(-m_2^2 - m_3^2 + \sigma_1) - (m_0^2 - m_2^2 - \sigma_2)(-m_1^2 + m_3^2 + \sigma_2)}{\sqrt{\lambda(m_0^2, m_2^2, \sigma_2)}\sqrt{\lambda(\sigma_2, m_3^2, m_1^2)}} \right) \\ \theta_{12} & = & \operatorname*{acos} \left(\frac{2\sigma_3(-m_1^2 - m_3^2 + \sigma_2) - (m_0^2 - m_3^2 - \sigma_3)(m_1^2 - m_2^2 + \sigma_3)}{\sqrt{\lambda(m_0^2, m_3^2, \sigma_3)}\sqrt{\lambda(\sigma_3, m_1^2, m_2^2)}} \right) \end{array}$$

Definitions for the ϕ_{ij} angles can be found under *DPD angles* (page 52).

1.3 Parameter definitions

Parameter values are provided in model-definitions.yaml, but the **keys** of the helicity couplings have to remapped to the helicity **symbols** that are used in this amplitude model. The function *parameter_key_to_symbol()* (page 75) implements this remapping, following the supplementary material of [1]. It is asserted below that:

- 1. the keys are mapped to symbols that exist in the nominal amplitude model
- 2. all parameter symbols in the nominal amplitude model have a value assigned to them.

1.3.1 Helicity coupling values

Production couplings

$\mathcal{H}^{\mathrm{production}}_{K(892),-1,-\frac{1}{2}}$	=	1.192614 - 1.025814i
$\mathcal{H}_{L(1405),-\frac{1}{2},0}^{\text{production}}$	=	-4.572486 + 3.190144i
$\mathcal{H}_{L(1520)}^{\text{production}} = 0$	=	0.293998 + 0.044324i
$\mathcal{H}_{L(1600)}^{(1020)} = \frac{1}{2},0$	=	-4.840649 - 3.082786i
$\mathcal{H}_{L(1670)}^{(1000), -2, 0}$	=	-0.339585 - 0.144678i
$\mathcal{H}_{L(1600)}^{\text{production}}$	=	-0.385772 - 0.110235i
$\mathcal{H}_{L(2000)}^{(1090),-\frac{1}{2},0}$	=	-8.014857 - 7.614006i
$\mathcal{H}_{D(1222)}^{\text{production}}$	=	-6.778191 + 3.051805i
$\mathcal{H}_{\mathcal{D}(1232),-\frac{1}{2},0}^{\text{production}}$	=	11.401585 - 3.125511i
$\mathcal{H}^{\text{production}}_{D(1700)}$	=	-10.37828 - 1.434872i
$\mathcal{H}^{\text{production}}_{\mathcal{H}^{(200), -\frac{1}{2}, 0}}$	=	0.068908 + 2.521444i
$\mathcal{H}^{\text{production}}$	=	-0.727145 - 4.155027i
$\mathcal{H}^{\text{production}}$	=	-6.71516 + 10.479411i
$\mathcal{H}^{\text{production}}$	=	$-2.68563 \pm 0.03849i$
$\mathcal{H}^{\mathrm{production}}$	_	1 + 0i
$K(892), 0, -\frac{1}{2}$		1 00
$\mathcal{H}^{\mathrm{production}}_{K(1430),0,-\frac{1}{2}}$	=	0.219754 + 8.741196i
$\mathcal{H}^{\mathrm{production}}_{L(1405),\frac{1}{2},0}$	=	10.44608 + 2.787441i
$\mathcal{H}_{L(1520),\frac{1}{2},0}^{\mathrm{production}}$	=	-0.160687 + 1.498833i
$\mathcal{H}_{L(1600),\frac{1}{2},0}^{\mathrm{production}^{2}}$	=	6.971233 - 0.842435i
$\mathcal{H}_{L(1670),\frac{1}{2},0}^{\mathrm{production}^{2}}$	=	-0.570978 + 1.011833i
$\mathcal{H}_{L(1690),\frac{1}{2},0}^{\mathrm{production}^2}$	=	-2.730592 - 0.353613i
$\mathcal{H}_{L(2000),\frac{1}{2},0}^{\mathrm{production}^2}$	=	-4.336255 - 3.796192i
$\mathcal{H}_{D(1232),\frac{1}{2},0}^{\text{production}^2}$	=	-12.987193 + 4.528336i
$\mathcal{H}_{D(1600),\frac{1}{2},0}^{\text{production}^2}$	=	6.729211 - 1.002383i
$\mathcal{H}_{D(1700),\frac{1}{2},0}^{\text{production}}$	=	-12.874102 - 2.10557i
$\mathcal{H}^{\text{production}}_{K(892),1,\frac{1}{2}}$	=	-3.141446 - 3.29341i
(,,2		

Decay couplings

$\mathcal{H}_{K(892) 0 0}^{ ext{decay}}$	=	1
$\mathcal{H}^{\text{decay}}$	=	1
$L(1405), 0, -\frac{1}{2}$		- 1
$\mathcal{H}_{L(1520),0,-\frac{1}{2}}$	=	-1
$\mathcal{H}_{L(1600),0,-\frac{1}{2}}^{\text{decay}}$	=	-1
$\mathcal{H}^{\text{decay}}$	=	1
$L(1670), 0, -\frac{1}{2}$		- 1
$\mathcal{H}_{L(1690),0,-\frac{1}{2}}$	=	-1
$\mathcal{H}_{L(2000),0,-\frac{1}{2}}^{\text{decay}}$	=	1
$\mathcal{H}^{\text{decay}}$	=	1
$D(1232), -\frac{1}{2}, 0$		-
$\mathcal{H}_{D(1600),-\frac{1}{2},0}$	=	1
$\mathcal{H}_{D(1700),-\frac{1}{2},0}^{\text{decay}}$	=	-1
$\mathcal{H}^{\text{decay}}_{K(700)}$	=	1
$\mathcal{H}^{\text{decay}}$	_	1
K(1430),0,0	_	1
$\mathcal{H}_{L(1405),0,\frac{1}{2}}$	=	T
$\mathcal{H}_{L(1520),0,\frac{1}{2}}^{\text{decay}}$	=	1
$\mathcal{H}^{\text{decay}}$	=	1
$L(1600), 0, \frac{1}{2}$		1
$\mathcal{A}_{L(1670),0,\frac{1}{2}}$	=	T
$\mathcal{H}_{L(1690),0,\frac{1}{2}}^{\text{decay}}$	=	1
$\mathcal{H}^{\text{decay}}_{L(2000),0,1}$	=	1
$L(2000), 0, \frac{1}{2}$ \mathcal{L} decay	_	1
$J_{L}^{(1232),\frac{1}{2},0}$	_	T
$\mathcal{H}_{D(1600),\frac{1}{2},0}^{\mathrm{decay}}$	=	1
$\mathcal{H}_{D(1700)}^{\text{decay}}$	=	1
$D(1700), \frac{1}{2}, 0$		

1.3.2 Non-coupling parameters

$R_{\rm res}$	=	1.5
R_{Λ_c}	=	5
$\Gamma_{D(1232)}$	=	0.117
$\Gamma_{D(1600)}$	=	0.3
$\Gamma_{D(1700)}$	=	0.38
$\Gamma_{K(1430)}$	=	0.19
$\Gamma_{K(700)}$	=	0.47800000000000004
$\Gamma_{K(892)}$	=	0.0472999999999999995
$\Gamma_{L(1405)\to\Sigma^-\pi^+}$	=	0.0505
$\Gamma_{L(1405) \rightarrow pK^-}$	=	0.0505
$\Gamma_{L(1520)}$	=	0.015195
$\Gamma_{L(1600)}$	=	0.25
$\Gamma_{L(1670)}$	=	0.03
$\Gamma_{L(1690)}$	=	0.07
$\Gamma_{L(2000)}$	=	0.17926
$\gamma_{K(1430)}$	=	0.020981
$\gamma_{K(700)}$	=	0.94106
m_0	=	2.28646
m_1	=	0.938272046
m_2	=	0.13957018
m_3	=	0.49367700000000003
$m_{D(1232)}$	=	1.232
$m_{D(1600)}$	=	1.6400000000000001
$m_{D(1700)}$	=	1.69
$m_{K(1430)}$	=	1.375
$m_{K(700)}$	=	0.8240000000000001
$m_{K(892)}$	=	0.8955000000000001
m_{K-}	=	0.49367700000000003
$m_{L(1405)}$	=	1.4051
$m_{L(1520)}$	=	1.518467
$m_{L(1600)}$	=	1.6300000000000001
$m_{L(1670)}$	=	1.67
$m_{L(1690)}$	=	1.69
$m_{L(2000)}$	=	1.98819
m_{Lambda_c+}	=	2.28646
m_{Sigma-}	=	1.1893699999999998
\bar{m}_{pi+}	=	0.13957018
m_p	=	0.938272046

CROSS-CHECK WITH LHCB DATA

2.1 Lineshape comparison

We compute a few lineshapes for the following point in phase space and compare it with the values from [1]:

```
{'costhetap': -0.9949949110827053,
'm2kpi': 0.7980703453578917,
'm2pk': 3.6486261122281745,
'phikpi': -0.4,
'phip': -0.3}
```

The lineshapes are computed for the following decay chains:

 $\begin{array}{c} \Lambda_c^+ \xrightarrow{L=0} K(892) \xrightarrow{L=1} {s=0} \pi^+ K^- p \\ \Lambda_c^+ \xrightarrow{L=0} {S=1/2} \Lambda(1405) \xrightarrow{L=0} {K^- p \pi^+} \\ \Lambda_c^+ \xrightarrow{L=1} {S=3/2} \Lambda(1690) \xrightarrow{L=2} {S=1/2} K^- p \pi^+ \end{array}$

{'BW_K(892)_p^1_q^0': '(2.1687201455088894+23.58225917009096j)', 'BW_L(1405)_p^0_q^0': '(-0.5636481410171861+0.13763637759224928j)', 'BW_L(1690)_p^2_q^1': '(-1.5078327158518026+0.9775036395061584j)'}

 $\begin{array}{l} 2.16872014550901+23.5822591700909i\\-0.563648141017186+0.137636377592249i\\-1.5078327158518+0.977503639506157i\end{array}$

Tip: These values are equal up to 13 decimals.

2.2 Amplitude comparison

The amplitude for each decay chain and each outer state helicity combination are evaluated on the following point in phase space:

θ_{23}	=	1.821341166520149
θ_{31}	=	1.8038351483715633
θ_{12}	=	1.1139045236042229
$\zeta_{1(1)}^{0}$	=	0.0
$\zeta_{1(1)}^{1}$	=	0.0
$\zeta_{2(1)}^{0}$	=	-2.0777687076712614
$\zeta_{2(1)}^{1}$	=	0.22583331080386268
$\zeta_{3(1)}^{0}$	=	2.6540796539955838
$\zeta_{3(1)}^{1}$	=	-0.5594175047790548
σ_1	=	0.7980703453578917
σ_2	=	3.6486261122281745
σ_3	=	1.9247541217931925

2.2.1 Default model

Tip: Computed amplitudes are equal to LHCb amplitudes up to **13 decimals**.

	Computed	Expected	Difference
ArD (1232) 1	$\mathcal{H}^{\mathrm{production}}_{D(1232),-\frac{1}{2},0}$		
A++	-0.488498+0.517710j	-0.488498+0.517710j	3.08e-14
A+-	0.894898-0.948412j	0.894898-0.948412j	7.14e-15
A-+	0.121490-0.128755j	0.121490-0.128755j	1.80e-14
A	-0.222563+0.235872j	-0.222563+0.235872j	6.36e-15
ArD (1232) 2	$\mathcal{H}^{\text{production}}_{D(1232),\frac{1}{2},0}$		
A++	-0.222563+0.235872j	-0.222563+0.235872j	6.36e-15
A+-	-0.121490+0.128755j	-0.121490+0.128755j	1.80e-14
A-+	-0.894898+0.948412j	-0.894898+0.948412j	7.14e-15
A	-0.488498+0.517710j	-0.488498+0.517710j	3.08e-14
ArD(1600)1	$\mathcal{H}^{\mathrm{production}}_{D(1600),-\frac{1}{2},0}$		
A++	0.289160+0.081910j	0.289160+0.081910j	3.07e-14
A+-	-0.529724-0.150054j	-0.529724-0.150054j	6.87e-15
A-+	-0.071915-0.020371j	-0.071915-0.020371j	1.80e-14
A	0.131743+0.037319j	0.131743+0.037319j	5.91e-15
ArD(1600)2	$\mathcal{H}^{\mathrm{production}}_{D(1600),\frac{1}{2},0}$		
A++	0.131743+0.037319j	0.131743+0.037319j	5.91e-15
A+-	0.071915+0.020371j	0.071915+0.020371j	1.80e-14
A-+	0.529724+0.150054j	0.529724+0.150054j	6.87e-15
A	0.289160+0.081910j	0.289160+0.081910j	3.07e-14
ArD(1700)1	$\mathcal{H}^{\mathrm{production}}_{D(1700),-\frac{1}{2},0}$		
A++	-0.018885-0.001757j	-0.018885-0.001757j	3.20e-13
A+-	0.315695+0.029366j	0.315695+0.029366j	2.00e-14
A-+	0.004697+0.000437j	0.004697+0.000437j	3.34e-13
A	-0.078514-0.007303j	-0.078514-0.007303j	6.86e-15
ArD(1700)2	$\mathcal{H}^{\mathrm{production}}_{D(1700),\frac{1}{2},0}$		
A++	0.078514+0.007303j	0.078514+0.007303j	6.86e-15
A+-	0.004697+0.000437j	0.004697+0.000437j	3.34e-13
A-+	0.315695+0.029366j	0.315695+0.029366j	2.00e-14

			D."
	Computed	Expected	Difference
A	0.018885+0.001757j	0.018885+0.001757j	3.20e-13
ArK(892)1	$\mathcal{H}^{\mathrm{production}}_{K(892),0,-rac{1}{2}}$		
A++	-0.537695-5.846793j	-0.537695-5.846793j	4.88e-15
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000j	0.000000+0.000000j	
A	0.000000+0.000000j	0.000000+0.000000j	
ArK(892)2	$\mathcal{H}^{\mathrm{production}}_{K(892),-1,-rac{1}{2}}$		
A++	-0.000000+0.000000j	0.000000+0.000000j	
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	1.485636+16.154534j	1.485636+16.154534j	3.42e-15
A	0.000000+0.000000j	0.000000+0.000000j	
ArK(892)3	$\mathcal{H}_{K(892),1,\frac{1}{2}}^{\mathrm{production}}$		
A++	-0.000000+0.000000j	0.000000+0.000000j	
A+-	-1.485636-16.154534j	-1.485636-16.154534j	3.32e-15
A-+	-0.000000+0.000000j	0.000000+0.000000j	
A	0.000000+0.000000j	0.000000+0.000000j	
ArK(892)4	$\mathcal{H}^{\text{production}}_{K(892) \ 0 \ \frac{1}{2}}$		
A++	-0.000000+0.000000j	0.000000+0.000000j	
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000i	0.000000+0.000000j	
A	-0.537695-5.846793j	-0.537695-5.846793j	4.88e-15
ArK(1430)1	$\mathcal{H}^{\text{production}}_{K(1430),0,\frac{1}{2}}$	5	
A++	-0.000000+0.0000001	0.000000+0.000000i	
A+-	0.000000+0.000000i	0.000000+0.000000j	
A-+	-0.000000+0.000000i	0.000000+0.000000j	
A	0.909456+0.072819i	0.909456+0.072819j	1.37e-16
ArK(1430)2	$\mathcal{H}_{K(1420)}^{\text{production}}$		
Α++	0.909456+0.072819i	0.909456+0.072819i	1.37e-16
A+-	0.000000+0.000000i	0.000000+0.000000i	10/010
A-+	-0.000000+0.000000i	0.000000+0.000000i	
A	0.000000+0.000000i	0.000000+0.000000i	
ArK(700)1	$\mathcal{H}_{K(700)}^{\text{production}}$		
A++	-0.000000+0.0000001	0.000000+0.000000i	
A+-	0.000000+0.000000i	0.000000+0.000000j	
A-+	-0.000000+0.000000i	0.000000+0.000000j	
A	-1.708879+3.380634i	-1.708879+3.380634i	4.97e-16
ArK(700)2	$\mathcal{H}^{\text{production}}_{\mathcal{H}(\overline{z}\circ \circ)\circ 1}$		
A++	$\frac{K(700),0,-\frac{1}{2}}{-1.708879+3.380634j}$	-1.708879+3.380634j	4.97e-16
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000j	0.000000+0.000000j	
A	0.000000+0.000000j	0.000000+0.000000j	
ArL(1405)1	$\mathcal{H}_{L(1405),-\frac{1}{2},0}^{\mathrm{production}}$		
A++	-0.412613+0.100755j	-0.412613+0.100755j	1.49e-15
A+-	-0.256372+0.062603j	-0.256372+0.062603j	3.27e-15
A-+	-0.242818+0.059293j	-0.242818+0.059293j	1.30e-15
A	-0.150872+0.036841j	-0.150872+0.036841j	3.42e-15
ArL(1405)2	$\mathcal{H}_{L(1405),\frac{1}{2},0}^{\mathrm{production}}$		
A++	-0.150872+0.036841j	-0.150872+0.036841j	3.42e-15
A+-	0.242818-0.059293j	0.242818-0.059293j	1.30e-15
A-+	0.256372-0.062603j	0.256372-0.062603j	3.27e-15

Table	21	- continued from	previous page
i abic	<u> </u>		providus page

	Table 2.1 - continued	from previous page	
	Computed	Expected	Difference
A	-0.412613+0.100755j	-0.412613+0.100755j	1.49e-15
ArL(1520)1	$\mathcal{H}_{L(1520),-\frac{1}{2},0}^{\text{production}}$		
A++	0.257632-0.288056j	0.257632-0.288056j	1.56e-14
A+-	0.731594-0.817988j	0.731594-0.817988j	2.29e-14
A-+	0.151613-0.169517j	0.151613-0.169517j	1.55e-14
A	0.430534-0.481376j	0.430534-0.481376j	2.30e-14
ArL(1520)2	$\mathcal{H}_{L(1520),\frac{1}{2},0}^{\mathrm{production}}$		
A++	-0.430534+0.481376j	-0.430534+0.481376j	2.29e-14
A+-	0.151613-0.169517j	0.151613-0.169517j	1.55e-14
A-+	0.731594-0.817988j	0.731594-0.817988j	2.28e-14
A	-0.257632+0.288056j	-0.257632+0.288056j	1.55e-14
ArL(1600)1	$\mathcal{H}_{L(1600),-\frac{1}{2},0}^{\text{production}}$		
A++	-0.385436+0.424707j	-0.385436+0.424707j	1.35e-15
A+-	0.382669-0.421658j	0.382669-0.421658j	3.75e-15
A-+	-0.226825+0.249935j	-0.226825+0.249935j	1.60e-15
A	0.225196-0.248141j	0.225196-0.248141j	3.56e-15
ArL(1600)2	$\mathcal{H}_{L(1600),\frac{1}{2},0}^{\text{production}}$		
A++	-0.225196+0.248141j	-0.225196+0.248141j	3.60e-15
A+-	-0.226825+0.249935j	-0.226825+0.249935j	1.60e-15
A-+	0.382669-0.421658j	0.382669-0.421658j	3.80e-15
A	0.385436-0.424707j	0.385436-0.424707j	1.44e-15
ArL(1670)1	$\mathcal{H}_{L(1670),-\frac{1}{2},0}^{\text{production}}$		
A++	-0.846639+0.064025j	-0.846639+0.064025j	1.18e-15
A+-	-0.526049+0.039781j	-0.526049+0.039781j	3.17e-15
A-+	-0.498237+0.037678j	-0.498237+0.037678j	1.11e-15
A	-0.309574+0.023411j	-0.309574+0.023411j	3.59e-15
ArL(1670)2	$\mathcal{H}_{L(1670),\frac{1}{2},0}^{\text{production}}$	-	
A++	-0.309574+0.023411j	-0.309574+0.023411j	3.59e-15
A+-	0.498237-0.037678j	0.498237-0.037678j	1.11e-15
A-+	0.526049-0.039781j	0.526049-0.039781j	3.17e-15
A	-0.846639+0.064025j	-0.846639+0.064025j	1.18e-15
ArL(1690)1	$\mathcal{H}_{L(1690),-\frac{1}{2},0}^{\mathrm{production}}$	-	
A++	0.232446-0.150691j	0.232446-0.150691j	1.66e-14
A+-	0.660073-0.427915j	0.660073-0.427915j	2.37e-14
A-+	0.136791-0.088680j	0.136791-0.088680j	1.65e-14
A	0.388445-0.251823j	0.388445-0.251823j	2.37e-14
ArL(1690)2	$\mathcal{H}_{L(1690),\frac{1}{2},0}^{\text{production}}$		
A++	-0.388445+0.251823j	-0.388445+0.251823j	2.36e-14
A+-	0.136791-0.088680j	0.136791-0.088680j	1.65e-14
A-+	0.660073-0.427915j	0.660073-0.427915j	2.37e-14
A	-0.232446+0.150691j	-0.232446+0.150691j	1.66e-14
ArL(2000)1	$\mathcal{H}_{L(2000),-rac{1}{2},0}^{\mathrm{production}}$		
A++	1.072514+1.195841j	1.072514+1.195841j	1.47e-15
A+-	0.666394+0.743022j	0.666394+0.743022j	2.94e-15
A-+	0.631162+0.703738j	0.631162+0.703738j	1.34e-15
A	0.392165+0.437260j	0.392165+0.437260j	3.29e-15
ArL(2000)2	$\mathcal{H}_{L(2000),\frac{1}{2},0}^{\text{production}}$		
A++	0.392165+0.437260j	0.392165+0.437260j	3.29e-15
A+-	-0.631162-0.703738j	-0.631162-0.703738j	1.34e-15
A-+	-0.666394-0.743022j	-0.666394-0.743022j	2.94e-15

Table 2.1 – continued from previous page

	Computed	Expected	Difference
A	1.072514+1.195841j	1.072514+1.195841j	1.47e-15

2.2.2 LS-model

Tip: Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.

	Computed	Expected	Difference
ArD(1232)1	$\mathcal{H}^{\mathrm{LS, production}}_{\mathrm{D}(1222), 1, 3}$		
Δ++	$\frac{D(1232), 1, \frac{2}{2}}{0.502796 - 0.532862i}$	0 502796-0 532862i	1 91e-14
Δ+-	-0 546882+0 579585i	-0 546882+0 579585i	5 18e-15
A-+	0.546882-0.579585i	0.546882-0.579585i	5.18e-15
A	0.502796-0.532862i	0.502796-0.532862i	1 91e-14
ArD (1232) 2	$\mathcal{H}^{\mathrm{LS, production}}_{\mathrm{D}(1000)}$ a 3		
Δ++	$D(1232), 2, \frac{3}{2}$	-0 180489+0 191282i	5 49e-14
Δ+-	0.689818-0.731068i	0.689818-0.731068i	2 43e-15
Δ-+	0.689818-0.731068j	0.689818-0.731068j	2.130 15
A	0 180489-0 191282j	0 180489-0 191282j	5 49e-14
$\frac{11}{2}$	$\mathcal{H}^{\text{LS,production}}$	0.100109 0.1912025	5.190 11
AID (1000)1	$D(1600), 1, \frac{3}{2}$	0.007(04.0.004007)	1.70 1.4
A++	-0.297624-0.084307j	-0.297624-0.084307j	1.79e-14
A+-	0.323720+0.091699j	0.323720+0.091699j	3.99e-15
A-+	-0.323720-0.091699j	-0.323720-0.091699j	3.99e-15
A	-0.29/624-0.08430/j	-0.297624-0.084307j	1.79e-14
ArD(1600)2	$\mathcal{H}^{\text{LS,production}}_{D(1600),2,\frac{3}{2}}$		
A++	0.143541+0.040660j	0.143541+0.040660j	5.47e-14
A+-	-0.548604-0.155402j	-0.548604-0.155402j	1.92e-15
A-+	-0.548604-0.155402j	-0.548604-0.155402j	1.80e-15
A	-0.143541-0.040660j	-0.143541-0.040660j	5.44e-14
ArD (1700) 1	$\mathcal{H}_{D(1700),1,\frac{3}{2}}^{\text{LS,production}}$		
A++	-0.042164-0.003922j	-0.042164-0.003922j	1.10e-13
A+-	-0.226551-0.021074j	-0.226551-0.021074j	1.42e-14
A-+	-0.226551-0.021074j	-0.226551-0.021074j	1.42e-14
A	0.042164+0.003922j	0.042164+0.003922j	1.11e-13
ArD (1700) 2	$\mathcal{H}_{D(1700),2,rac{3}{2}}^{ ext{LS,production}}$		
A++	-0.105349-0.009800j	-0.105349-0.009800j	5.87e-14
A+-	0.336381+0.031290j	0.336381+0.031290j	2.29e-14
A-+	-0.336381-0.031290j	-0.336381-0.031290j	2.29e-14
A	-0.105349-0.009800j	-0.105349-0.009800j	5.85e-14
ArK(892)1	$\mathcal{H}_{K(892),0,\frac{1}{2}}^{\text{LS,production}}$		
A++	0.219513+2.386943j	0.219513+2.386943j	4.88e-15
A+-	-0.857733-9.326825j	-0.857733-9.326825j	3.64e-15
A-+	-0.857733-9.326825j	-0.857733-9.326825j	3.64e-15
A	-0.219513-2.386943j	-0.219513-2.386943j	4.88e-15
ArK(892)2	$\mathcal{H}_{K(892),1,\frac{1}{2}}^{\text{LS,production}}$		
A++	0.219549+2.387337j	0.219549+2.387337j	7.18e-15
A+-	-0.857874-9.328364j	-0.857874-9.328364j	2.84e-15
A-+	0.857874+9.328364j	0.857874+9.328364j	2.78e-15
A	0.219549+2.387337j	0.219549+2.387337j	7.18e-15

	Table 2.2 - continued	from previous page	
	Computed	Expected	Difference
ArK(892)3	$\mathcal{H}_{K(892),1,\frac{3}{2}}^{\text{LS,production}}$		
A++	0.310489+3.376204j	0.310489+3.376204j	4.51e-15
A+-	0.606609+6.596150j	0.606609+6.596150j	2.78e-15
A-+	-0.606609-6.596150j	-0.606609-6.596150j	2.76e-15
A	0.310489+3.376204j	0.310489+3.376204j	4.51e-15
ArK(892)4	$\mathcal{H}^{\mathrm{LS, production}}$	5	
7++	$K(892), 2, \frac{3}{2}$ 0 310620+3 377724i	0 310620+3 377724;	1 380 14
λ+-	0.510029 ± 5.577724	$0.510029 \pm 5.57772 \pm 10029 \pm 5.00110$	7 70e 15
λ_+	$0.000882 \pm 0.599119j$	0.000002+0.599119j 0.606882+6.599119j	7.79e-15
λ	-0.310629-3.377724i	-0.310629-3.377724j	1.79c-15
Amr (1420) 1	LS,production	0.510027 5.57772+j	1.500 14
AFK (1430) 1	$J_{K(1430),0,\frac{1}{2}}$		1.00.15
A++	0.643091+0.051436j	0.643091+0.051436j	1.29e-16
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000j	0.000000+0.000000j	1.00.16
A	0.643091+0.051436j	0.643091+0.051436j	1.29e-16
ArK(1430)2	$\mathcal{H}_{K(1430),1,\frac{1}{2}}^{\text{LS,production}}$		
A++	-0.643091-0.051436j	-0.643091-0.051436j	2.22e-16
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000j	0.000000+0.000000j	
A	0.643091+0.051436j	0.643091+0.051436j	2.22e-16
ArK(700)1	$\mathcal{H}_{K(700),0,\frac{1}{2}}^{\text{LS,production}}$		
A++	-1.070937+2.282902j	-1.070937+2.282902j	3.94e-16
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000j	0.000000+0.000000j	
A	-1.070937+2.282902j	-1.070937+2.282902j	3.94e-16
ArK(700)2	$\mathcal{H}_{K(700),1,\frac{1}{2}}^{\text{LS,production}}$		
A++	1.070937-2.282902j	1.070937-2.282902j	4.40e-16
A+-	0.000000+0.000000j	0.000000+0.000000j	
A-+	-0.000000+0.000000j	0.000000+0.000000j	
A	-1.070937+2.282902j	-1.070937+2.282902j	4.40e-16
ArL(1405)1	$\mathcal{H}_{L(1405),0,\frac{1}{2}}^{\text{LS,production}}$		
A++	-0.398444+0.097295j	-0.398444+0.097295j	8.23e-16
A+-	-0.009584+0.002340j	-0.009584+0.002340j	7.99e-14
A-+	0.009584-0.002340j	0.009584-0.002340j	8.05e-14
A	-0.398444+0.097295j	-0.398444+0.097295j	8.56e-16
ArL(1405)2	$\mathcal{H}_{L(1405),1,\frac{1}{2}}^{\text{LS,production}}$		
A++	0.163270-0.039869j	0.163270-0.039869j	2.06e-14
A+-	0.311387-0.076037j	0.311387-0.076037j	2.50e-14
A-+	0.311387-0.076037j	0.311387-0.076037j	2.50e-14
A	-0.163270+0.039869j	-0.163270+0.039869j	2.04e-14
ArL (1520) 1	$\mathcal{H}_{L(1520),1,\frac{3}{2}}^{\text{LS,production}}$		
A++	0.117387-0.135999j	0.117387-0.135999j	3.12e-14
A+-	-0.599627+0.694701j	-0.599627+0.694701j	1.92e-14
A-+	-0.599627+0.694701j	-0.599627+0.694701j	1.92e-14
A	-0.117387+0.135999j	-0.117387+0.135999j	3.12e-14
ArL(1520)2	$\mathcal{H}_{L(1520),2,\frac{3}{2}}^{\text{LS,production}}$		
A++	0.330006-0.382330j	0.330006-0.382330j	7.45e-14
A+-	0.278127-0.322225j	0.278127-0.322225j	7.90e-14
A-+	-0.278127+0.322225j	-0.278127+0.322225j	7.90e-14
A	0.330006-0.382330i	0.330006-0.382330i	7.45e-14

		nom previous page	
	Computed	Expected	Difference
ArL(1600)1	$\mathcal{H}_{L(1600),0,\frac{1}{2}}^{\text{LS,production}}$		
A++	-0.431782+0.475775j	-0.431782+0.475775j	1.40e-15
A+-	0.110199-0.121426j	0.110199-0.121426j	9.54e-15
A-+	0.110199-0.121426j	0.110199-0.121426j	9.90e-15
A	0.431782-0.475775j	0.431782-0.475775j	1.40e-15
ArL(1600)2	$\mathcal{H}_{L(1600),1,\frac{1}{2}}^{\text{LS,production}}$		
A++	0.102310-0.112734j	0.102310-0.112734j	3.05e-14
A+-	-0.389148+0.428797j	-0.389148+0.428797j	2.21e-14
A-+	0.389148-0.428797j	0.389148-0.428797j	2.22e-14
A	0.102310-0.112734j	0.102310-0.112734j	3.05e-14
ArL(1670)1	$\mathcal{H}_{L(1670),0,\frac{1}{2}}^{\text{LS,production}}$		
A++	-0.817566+0.061827j	-0.817566+0.061827j	1.69e-16
A+-	-0.019666+0.001487j	-0.019666+0.001487j	7.61e-14
A-+	0.019666-0.001487j	0.019666-0.001487j	7.62e-14
A	-0.817566+0.061827j	-0.817566+0.061827j	1.69e-16
ArL(1670)2	$\mathcal{H}_{L^{(1670)}1}^{\text{LS,production}}$		
A++	0.345271-0.026110j	0.345271-0.026110j	1.85e-14
A+-	0.658498-0.049798j	0.658498-0.049798j	2.38e-14
A-+	0.658498-0.049798j	0.658498-0.049798j	2.39e-14
A	-0.345271+0.026110j	-0.345271+0.026110j	1.87e-14
ArL(1690)1	$\mathcal{H}_{L(1690),1,\frac{3}{2}}^{\text{LS,production}}$		
A++	0.110308-0.071511j	0.110308-0.071511j	3.03e-14
A+-	-0.563468+0.365287j	-0.563468+0.365287j	1.82e-14
A-+	-0.563468+0.365287j	-0.563468+0.365287j	1.83e-14
A	-0.110308+0.071511j	-0.110308+0.071511j	3.03e-14
ArL(1690)2	$\mathcal{H}_{L(1690),2,\frac{3}{2}}^{\text{LS,production}}$		
A++	0.333287-0.216064j	0.333287-0.216064j	7.66e-14
A+-	0.280891-0.182097j	0.280891-0.182097j	8.10e-14
A-+	-0.280891+0.182097j	-0.280891+0.182097j	8.09e-14
A	0.333287-0.216064j	0.333287-0.216064j	7.66e-14
ArL(2000)1	$\mathcal{H}_{L(2000),0,\frac{1}{2}}^{\text{LS,production}}$		
A++	1.036314+1.105950j	1.036314+1.105950j	1.14e-15
A+-	0.024928+0.026603j	0.024928+0.026603j	7.91e-14
A-+	-0.024928-0.026603j	-0.024928-0.026603j	7.92e-14
A	1.036314+1.105950j	1.036314+1.105950j	1.14e-15
ArL(2000)2	$\mathcal{H}_{L(2000),1,\frac{1}{2}}^{\text{LS,production}}$		
A++	-0.529297-0.564863j	-0.529297-0.564863j	1.86e-14
A+-	-1.009471-1.077303j	-1.009471-1.077303j	2.35e-14
A-+	-1.009471-1.077303j	-1.009471-1.077303j	2.36e-14
A	0.529297+0.564863i	0.529297+0.564863i	1.86e-14

Table 2.2 - continued from previous page

INTENSITY DISTRIBUTION

The complete intensity expression contains 43,198 mathematical operations.

3.1 Definition of free parameters

After substituting the parameters that are not production couplings, the total intensity expression contains **9,516** operations.

3.2 Distribution

Comparison with Figure 2 from the original LHCb study [1]:

<Figure size 1200x500 with 2 Axes>

3.3 Decay rates

Generating intensity-based sample:	0%	0/100000 [00:00 , ?it/s]</th
<figure 1="" 900x900="" axes="" size="" with=""></figure>		

				Rate	e mat	rix f	or iso	obars	s (%)			
	$-\Lambda(1405)$	$-\Lambda(1520)$	$-\Lambda(1600)$	$-\Lambda(1670)$	$-\Lambda(1690)$	$-\Lambda(2000)$	$-\Delta(1232)$	$-\Delta(1600)$	$-\Delta(1700)$	-K(700)	- K(892)	$\left -\frac{1}{K(1430)} \right $
K(1430) -	4.78	0.16	-1.68	0.04	0.03	-7.82	5.09	1.96	-1.15	-1.95	0.04	14.70
K(892) -	-3.89	-0.01	-0.35	-0.40	-0.14	-1.36	-2.18	0.50	2.23	-0.01	21.95	
K(700) -	2.15	0.19	-0.16	0.32	0.30	2.19	-0.26	-1.68	-1.25	2.99		
$\Delta(1700)$ -	1.30	-0.12	-0.04	0.25	-0.05	-0.23	-0.00	-0.00	3.89			
$\Delta(1600)$ -	0.62	0.10	1.88	0.03	0.32	0.49	-1.84	4.50				
$\Delta(1232) =$	-0.08	0.44	-7.13	0.01	-0.61	-0.05	28.73					
Λ(2000) -	2.60	-0.00	0.01	0.84	0.01	9.55						
$\Lambda(1690)$ -	0.00	0.57	-0.00	0.02	1.16							
$\Lambda(1670)$ -	1.55	0.01	0.01	1.15								
$\Lambda(1600)$ -	0.01	-0.01	5.16									
$\Lambda(1520)$ -	-0.02	1.91										
$\Lambda(1405)$ -	7.78											

3.4 Dominant decays

<Figure size 910x700 with 1 Axes>

<Figure size 900x900 with 1 Axes>

			-	Rate	mat	rix o	ver s	ub-re	egior	1		
	-K(1430)	-K(892)	-K(700)	$-\Delta(1700)$	$-\Delta(1600)$	$-\Delta(1232)$	$-\Lambda(2000)$	$-\Lambda(1690)$	- A(1670)	$-\Lambda(1600)$	$-\Lambda(1520)$	- A(1405)
$\Lambda(1405)$ -	26.64	-65.25	106.84	-72.50	-9.85	-18.68	22.71	-34.00	26.47	-69.46	-13.91	65.45
$\Lambda(1520)$ -	23.32	-126.62	-21.44	- 23.72	24.26	-23.29	-12.17	14.77	10.25	78.67	20.14	
$\Lambda(1600)$ -	80.84	-232.45	-106.90	-0.36	103.85	-66.60	-53.38	26.84	15.06	113.71		
$\Lambda(1670)$ -	18.75	-67.31	17.46	-23.81	11.85	-16.26	3.48	-4.59	6.00			
$\Lambda(1690)$ -	- 9.43	-14.38	-25.45	3.37	-2.82	5.96	-5.52	8.01				
$\Lambda(2000)$ -	-21.53	16.91	40.36	-6.46	-23.97	10.39	15.31					
$\Delta(1232)$ -	- 46.43	112.13	4.91	14.58	- 44.57	19.80						
$\Delta(1600)$ -	57.63	-101.60	-41.97	7.73	35.56							
$\Delta(1700)$ -	-19.66	148.94	-59.00	45.05								
K(700) -	-11.21	-13.98	55.55									
K(892) -	-123.00	282.24										
K(1430) -	31.70											

CHAPTER FOUR

POLARIMETER VECTOR FIELD

Final state IDs:

- 1. p
- 2. π^+
- 3. K^{-}

Sub-system definitions:

1.
$$K^{**} \to \pi^+ K^-$$

2.
$$\Lambda^{**} \to pK^-$$

3. $\Delta^{**} \rightarrow p\pi^+$

4.1 Dominant contributions

4.2 Total polarimetry vector field

<IPython.core.display.SVG object>

```
<IPython.core.display.SVG object>
```

<IPython.core.display.SVG object>

4.3 Aligned vector fields per chain

```
<Figure size 1300x500 with 4 Axes>

<pr
```


1.5

1.0

0.5

1.0

0.5

1.5

0.5

1.0

1.5

UNCERTAINTIES

5.1 Model loading

Of the 18 models, there are 9 with a unique expression tree.

Show number of mathematical operations per model

		Model description	n ops.
0		Default amplitude model	43,198
1	= 0	Alternative amplitude model with K(892) with free mass and width	43,198
2	= 0	Alternative amplitude model with $L(1670)$ with free mass and width	43,198
3	= 0	Alternative amplitude model with $L(1690)$ with free mass and width	43, 198
4	= 0	Alternative amplitude model with D(1232) with free mass and width	43, 198
5	= 0	Alternative amplitude model with L(1600), D(1600), D(1700) with free mass and width	43,198
6	= 0	Alternative amplitude model with free L(1405) Flatt'e widths, indicated as G1 (pK channel) and G2 (Sigmapi)	43, 198
7		Alternative amplitude model with L(1800) contribution added with free mass and width	44,222
8		Alternative amplitude model with $L(1810)$ contribution added with free mass and width	46,782
9		Alternative amplitude model with D(1620) contribution added with free mass and width	44,222
10		Alternative amplitude model in which a Relativistic Breit-Wigner is used for the K(700) contribution	43,470
11	= 0	Alternative amplitude model with K(700) with free mass and width	43,198
12		Alternative amplitude model with K(1410) contribution added with mass and width from PDG2020	46,780
13		Alternative amplitude model in which a Relativistic Breit-Wigner is used for the K(1430) contribution	43,470
14	= 0	Alternative amplitude model with K(1430) with free width	43,198
15		Alternative amplitude model with an additional overall exponential form factor exp(-alpha q^2) multiplying Bugg lineshapes. The exponential parameter is indicated as ``alpha''	43, 582
16	= 0	Alternative amplitude model with free radial parameter d for the Lc resonance, indicated as dLc	43,198
17		Alternative amplitude model obtained using LS couplings	110,839

5.2 Statistical uncertainties

5.2.1 Parameter bootstrapping

Generating intensity-based sample: 0%	0/100000 [00:00 , ?it/s]</th
---------------------------------------	------------------------------

5.2.2 Mean and standard deviations

(100, 100000)

5.2.3 Distributions

Intensity distribution (statistical & systematics)

5.2.4 Comparison with nominal values

5.3 Systematic uncertainties

5.3.1 Mean and standard deviations

(18, 100000)

5.3.2 Distributions

```
<Figure size 2000x1600 with 17 Axes>

</
```


5.3. Systematic uncertainties

Polarimetry field $\vec{\alpha}$ (model)

5.4 Uncertainty on polarimetry

For each bootstrap or alternative model *i*, we compute the angle between each aligned polarimeter vector $\vec{\alpha}_i$ and the one from the nominal model, $\vec{\alpha}_0$:

$$\cos \theta_i = \frac{\vec{\alpha}_i \cdot \vec{\alpha}_0}{|\alpha_i| |\alpha_0|}.$$

The solid angle can then be computed as:

$$\delta \Omega = \int_0^{2\pi} \int_0^\theta \mathrm{d}\phi \, \mathrm{d}\cos\theta = 2\pi \left(1 - \cos\theta\right).$$

The statistical uncertainty is given by taking the standard deviation on the $\delta\Omega$ distribution and the systematic uncertainty is given by taking finding $\theta_{max} = \max \theta_i$ and computing $\delta\Omega_{max}$ from that.

5.5 Decay rates

		Re	sonance	De	cay rate		LHC	b					
		$\Lambda($	1405)	7.78 =	$\pm 0.43^{+3.01}_{-2.53}$	$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = 7$	7.7 ± 0.2	± 3.0					
		$\Lambda($	1520)	1.91 =	$\pm 0.10^{+0.04}_{-0.24}$	$\frac{4}{4}$ 1.8	86 ± 0.09	± 0.23					
		$\Lambda($	1600)	5.16 -	$\pm 0.28^{+0.50}_{-1.93}$	$\frac{0}{3}$ 5	6.2 ± 0.2	± 1.9					
		$\Lambda($	1670)	1.15 -	$\pm 0.04^{+0.06}_{-0.29}$	$\frac{5}{9}$ 1.1	8 ± 0.06	± 0.32					
		$\Lambda($	1690)	1.16 =	$\pm 0.01^{+0.06}_{-0.33}$	$\frac{5}{3}$ 1.1	9 ± 0.09	± 0.34					
		$\Lambda($	2000)	9.55 ±	$\pm 0.67^{+0.83}_{-2.26}$	$\frac{3}{6}$ 9.5	58 ± 0.27	± 0.93					
		Δ	(1232)	28.73	$\pm 1.34^{+1.7}_{-0.7}$	$\frac{76}{29}$ 28.	$.6 \pm 0.29$	± 0.76					
		Δ	1600)	4.50 ±	$\pm 0.51^{+0.93}_{-1.40}$	$\frac{3}{5}$ 4	1.5 ± 0.3	± 1.5					
		Δ	(1700)	3.89 ±	$\pm 0.07^{+0.94}_{-0.48}$	$\frac{4}{8}$ 3.	$.9 \pm 0.2$	± 0.94					
		K((700)	2.99 ±	$\pm 0.20^{+0.91}_{-0.59}$	ŭ 3.0	02 ± 0.16	± 0.92					
		K((892)	21.95	$\pm 1.24^{+0.5}_{-0.7}$	$\frac{59}{20}$ 22.	14 ± 0.23	3 ± 0.64					
		K((1430)	14.70	$\pm 0.80^{+2.7}_{-2.6}$	$\binom{8}{57}$ 14	4.7 ± 0.6	± 2.7					
Resonance	1	2	3	4	5	6	7	8	9	10	11	12	13
Resonance $\Lambda(1405)$	1 +0.11	2 -0.14	3 -0.01	4 -0.33	5 -0.99	6 +3.01	7 -2.53	8 -0.66	9 -1.58	10 -0.43	11 -0.01	12 -1.97	13 -0.11
$\frac{\textbf{Resonance}}{\Lambda(1405)}$ $\Lambda(1520)$	1 + 0.11 + 0.03	2 -0.14 +0.00	3 -0.01 +0.01	$4 \\ -0.33 \\ +0.01$	5 -0.99 -0.24	6 +3.01 -0.01	7 -2.53 -0.04	8 -0.66 -0.08	9 -1.58 -0.06	10 -0.43 -0.06	11 -0.01 +0.04	12 -1.97 -0.15	13 -0.11 -0.00
$\begin{array}{c} {\bf Resonance} \\ {\Lambda}(1405) \\ {\Lambda}(1520) \\ {\Lambda}(1600) \end{array}$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \end{array}$	2 -0.14 +0.00 -0.09	3 -0.01 +0.01 +0.13	4 -0.33 +0.01 +0.22	5 -0.99 -0.24 +0.50	6 +3.01 -0.01 -0.09	$7 \\ -2.53 \\ -0.04 \\ -0.30$	8 -0.66 -0.08 +0.23	9 -1.58 -0.06 -1.93	10 -0.43 -0.06 -0.46	11 -0.01 +0.04 +0.12	12 -1.97 -0.15 -1.85	13 -0.11 -0.00 -0.12
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \end{array}$	2 -0.14 +0.00 -0.09 +0.06	$\begin{array}{r} {\bf 3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \end{array}$	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \end{array}$	5 -0.99 -0.24 +0.50 -0.01	6 +3.01 -0.01 -0.09 -0.12	$ \begin{array}{r} 7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \end{array} $	$\begin{array}{r} 8 \\ -0.66 \\ -0.08 \\ +0.23 \\ -0.03 \end{array}$	9 -1.58 -0.06 -1.93 -0.11	$\begin{array}{r} 10 \\ -0.43 \\ -0.06 \\ -0.46 \\ +0.05 \end{array}$	$11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01$	$\begin{array}{r} 12 \\ -1.97 \\ -0.15 \\ -1.85 \\ -0.03 \end{array}$	$\begin{array}{c} 13 \\ -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \end{array}$	2 -0.14 +0.00 -0.09 +0.06 -0.00	$\begin{array}{r} \textbf{3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \\ +0.04 \end{array}$	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \end{array}$	5 -0.99 +0.24 +0.50 -0.01 +0.01	6 +3.01 -0.01 -0.09 -0.12 -0.06	$7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04$	$\begin{array}{r} \textbf{8} \\ -0.66 \\ -0.08 \\ +0.23 \\ -0.03 \\ -0.26 \end{array}$	9 -1.58 -0.06 -1.93 -0.11 -0.33	$\begin{array}{r} \textbf{10} \\ -0.43 \\ -0.06 \\ -0.46 \\ +0.05 \\ -0.08 \end{array}$	$11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.04$	12 -1.97 -0.15 -1.85 -0.03 +0.06	$\begin{array}{c} 13 \\ -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \\ +0.05 \end{array}$	2 -0.14 +0.00 -0.09 +0.06 -0.00 +0.10	3 -0.01 +0.01 +0.13 +0.03 +0.04 -0.08	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \\ -0.09 \end{array}$	5 -0.99 -0.24 +0.50 -0.01 +0.01 +0.08	6 +3.01 -0.01 -0.09 -0.12 -0.06 -0.85	$7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04 \\ -2.26$	8 -0.66 -0.08 +0.23 -0.03 -0.26 +0.83	9 -1.58 -0.06 -1.93 -0.11 -0.33 -0.93	$\begin{array}{r} 10 \\ -0.43 \\ -0.06 \\ -0.46 \\ +0.05 \\ -0.08 \\ +0.31 \end{array}$	$\begin{array}{r} 11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.04 \\ -0.23 \end{array}$	12 -1.97 -0.15 -1.85 -0.03 +0.06 -0.86	$\begin{array}{c} 13 \\ -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \\ +0.35 \end{array}$
$\begin{array}{c} \textbf{Resonance} \\ \hline \Lambda(1405) \\ \Lambda(1520) \\ \Lambda(1600) \\ \Lambda(1670) \\ \Lambda(1690) \\ \Lambda(2000) \\ \Delta(1232) \end{array}$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \\ +0.05 \\ -0.27 \end{array}$	2 -0.14 +0.00 -0.09 +0.06 -0.00 +0.10 +0.02	$\begin{array}{r} \textbf{3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \\ +0.04 \\ -0.08 \\ +0.31 \end{array}$	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \\ -0.09 \\ +1.76 \end{array}$	5 -0.99 -0.24 +0.50 -0.01 +0.01 +0.08 -0.44	6 +3.01 -0.01 -0.09 -0.12 -0.06 -0.85 -0.14	$\begin{array}{r} 7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04 \\ -2.26 \\ +0.49 \end{array}$	8 -0.66 +0.23 -0.03 -0.26 +0.83 -0.63	$\begin{array}{r} 9 \\ -1.58 \\ -0.06 \\ -1.93 \\ -0.11 \\ -0.33 \\ -0.93 \\ -0.77 \end{array}$	$\begin{array}{c} 10 \\ -0.43 \\ -0.06 \\ -0.46 \\ +0.05 \\ -0.08 \\ +0.31 \\ +0.53 \end{array}$	$\begin{array}{r} 11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.04 \\ -0.23 \\ -0.31 \end{array}$	$\begin{array}{r} 12 \\ -1.97 \\ -0.15 \\ -1.85 \\ -0.03 \\ +0.06 \\ -0.86 \\ +0.65 \end{array}$	$\begin{array}{c} \textbf{13} \\ \hline -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \\ +0.35 \\ +0.10 \end{array}$
$\begin{array}{c} \textbf{Resonance} \\ \hline \Lambda(1405) \\ \Lambda(1520) \\ \Lambda(1600) \\ \Lambda(1670) \\ \Lambda(1690) \\ \Lambda(2000) \\ \Delta(1232) \\ \Delta(1600) \end{array}$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \\ +0.05 \\ -0.27 \\ +0.33 \end{array}$	$\begin{array}{r} 2 \\ -0.14 \\ +0.00 \\ -0.09 \\ \mathbf{+0.06} \\ -0.00 \\ \mathbf{+0.10} \\ \mathbf{+0.02} \\ -0.10 \end{array}$	$\begin{array}{r} \textbf{3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \\ +0.04 \\ -0.08 \\ +0.31 \\ -0.15 \end{array}$	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \\ -0.09 \\ \mathbf{+1.76} \\ -0.28 \end{array}$	$\begin{array}{c} 5 \\ -0.99 \\ -0.24 \\ \mathbf{+0.50} \\ -0.01 \\ \mathbf{+0.01} \\ \mathbf{+0.08} \\ -0.44 \\ \mathbf{+0.59} \end{array}$	6 +3.01 -0.01 -0.09 -0.12 -0.06 -0.85 -0.14 -0.38	$\begin{array}{r} 7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04 \\ -2.26 \\ +0.49 \\ -1.40 \end{array}$	8 -0.66 -0.08 +0.23 -0.03 -0.26 +0.83 -0.63 -0.29	9 -1.58 -0.06 -1.93 -0.11 -0.33 -0.93 -0.77 +0.93	$\begin{array}{c} 10 \\ -0.43 \\ -0.06 \\ +0.05 \\ -0.08 \\ +0.31 \\ +0.53 \\ +0.03 \end{array}$	$\begin{array}{c} 11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.03 \\ -0.31 \\ +0.05 \end{array}$	$\begin{array}{r} 12 \\ -1.97 \\ -0.15 \\ -1.85 \\ -0.03 \\ +0.06 \\ -0.86 \\ +0.65 \\ -0.58 \end{array}$	$\begin{array}{c} 13 \\ -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \\ +0.35 \\ +0.10 \\ +0.07 \end{array}$
$\begin{array}{c} \textbf{Resonance} \\ \hline \Lambda(1405) \\ \Lambda(1520) \\ \Lambda(1600) \\ \Lambda(1670) \\ \Lambda(1670) \\ \Lambda(1690) \\ \Lambda(2000) \\ \Delta(1232) \\ \Delta(1600) \\ \Delta(1700) \end{array}$	$\begin{array}{c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \\ +0.05 \\ -0.27 \\ +0.33 \\ -0.01 \end{array}$	$\begin{array}{r} \textbf{2} \\ -0.14 \\ +0.00 \\ -0.09 \\ \textbf{+0.06} \\ -0.00 \\ +0.10 \\ +0.02 \\ -0.10 \\ +0.03 \end{array}$	$\begin{array}{r} \textbf{3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \\ +0.04 \\ -0.08 \\ +0.31 \\ -0.15 \\ -0.13 \end{array}$	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \\ -0.09 \\ \mathbf{+1.76} \\ -0.28 \\ +0.07 \end{array}$	$\begin{array}{c} 5 \\ \hline -0.99 \\ \mathbf{-0.24} \\ \mathbf{+0.50} \\ \mathbf{-0.01} \\ \mathbf{+0.01} \\ \mathbf{+0.08} \\ \mathbf{-0.44} \\ \mathbf{+0.59} \\ \mathbf{+0.39} \end{array}$	6 +3.01 -0.01 -0.09 -0.12 -0.06 -0.85 -0.14 -0.38 -0.48	$\begin{array}{r} 7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04 \\ -2.26 \\ +0.49 \\ -1.40 \\ -0.15 \end{array}$	$\begin{array}{r} \textbf{8} \\ -0.66 \\ -0.08 \\ +0.23 \\ -0.03 \\ -0.26 \\ \textbf{+0.83} \\ -0.63 \\ -0.29 \\ +0.82 \end{array}$	$\begin{array}{r} \textbf{9} \\ -1.58 \\ -0.06 \\ -1.93 \\ -0.11 \\ -0.33 \\ -0.93 \\ -0.77 \\ +0.93 \\ +0.94 \end{array}$	$\begin{array}{c} 10 \\ -0.43 \\ -0.06 \\ -0.46 \\ +0.05 \\ -0.08 \\ +0.31 \\ +0.53 \\ +0.03 \\ +0.18 \end{array}$	$\begin{array}{c} 11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.04 \\ -0.23 \\ -0.31 \\ +0.05 \\ +0.05 \end{array}$	$\begin{array}{r} 12 \\ -1.97 \\ -0.15 \\ -1.85 \\ -0.03 \\ +0.06 \\ -0.86 \\ +0.65 \\ -0.58 \\ +0.75 \end{array}$	$\begin{array}{c} 13 \\ -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \\ +0.35 \\ +0.10 \\ +0.07 \\ +0.03 \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \\ +0.05 \\ -0.27 \\ +0.33 \\ -0.01 \\ +0.17 \end{array}$	$\begin{array}{c} 2 \\ -0.14 \\ +0.00 \\ -0.09 \\ \mathbf{+0.06} \\ -0.00 \\ +0.10 \\ +0.02 \\ -0.10 \\ \mathbf{+0.03} \\ -0.02 \end{array}$	$\begin{array}{c} \textbf{3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \\ +0.04 \\ -0.08 \\ +0.31 \\ -0.15 \\ -0.13 \\ +0.04 \end{array}$	$\begin{array}{r} 4 \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \\ -0.09 \\ \mathbf{+1.76} \\ -0.28 \\ +0.07 \\ +0.75 \end{array}$	$\begin{array}{c} 5 \\ -0.99 \\ -0.24 \\ +0.50 \\ -0.01 \\ +0.01 \\ +0.08 \\ -0.44 \\ +0.59 \\ +0.39 \\ +0.62 \end{array}$	6 +3.01 -0.09 -0.12 -0.06 -0.85 -0.14 -0.38 -0.48 -0.48 -0.59	$\begin{array}{r} 7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04 \\ -2.26 \\ +0.49 \\ -1.40 \\ -0.15 \\ -0.31 \end{array}$	$\begin{array}{r} \textbf{8} \\ -0.66 \\ -0.08 \\ +0.23 \\ -0.03 \\ -0.26 \\ \textbf{+0.83} \\ -0.63 \\ -0.29 \\ +0.82 \\ -0.06 \end{array}$	$\begin{array}{r} \textbf{9} \\ -1.58 \\ -0.06 \\ -1.93 \\ -0.11 \\ -0.33 \\ -0.93 \\ -0.77 \\ +0.93 \\ +0.94 \\ +0.91 \end{array}$	$\begin{array}{c} 10 \\ -0.43 \\ -0.06 \\ -0.46 \\ +0.05 \\ -0.08 \\ +0.31 \\ +0.53 \\ +0.03 \\ +0.18 \\ +0.56 \end{array}$	$\begin{array}{c} 11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.04 \\ -0.23 \\ -0.31 \\ +0.05 \\ +0.05 \\ +0.25 \end{array}$	$\begin{array}{r} 12 \\ -1.97 \\ -0.15 \\ -1.85 \\ -0.03 \\ +0.06 \\ -0.86 \\ +0.65 \\ -0.58 \\ +0.75 \\ +0.42 \end{array}$	$\begin{array}{c} 13 \\ -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \\ +0.35 \\ +0.10 \\ +0.07 \\ +0.03 \\ +0.10 \end{array}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} 1 \\ +0.11 \\ +0.03 \\ -0.02 \\ -0.01 \\ +0.00 \\ +0.05 \\ -0.27 \\ +0.33 \\ -0.01 \\ +0.17 \\ -0.53 \end{array}$	$\begin{array}{c} 2 \\ -0.14 \\ +0.00 \\ -0.09 \\ +0.06 \\ -0.00 \\ +0.10 \\ +0.02 \\ -0.10 \\ +0.03 \\ -0.02 \\ -0.02 \end{array}$	$\begin{array}{c} \textbf{3} \\ -0.01 \\ +0.01 \\ +0.13 \\ +0.03 \\ +0.04 \\ -0.08 \\ +0.31 \\ -0.15 \\ -0.13 \\ +0.04 \\ -0.12 \end{array}$	$\begin{array}{r} \textbf{4} \\ -0.33 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.13 \\ -0.09 \\ \textbf{+1.76} \\ -0.28 \\ +0.07 \\ +0.75 \\ -0.46 \end{array}$	$\begin{array}{c} 5 \\ -0.99 \\ -0.24 \\ +0.50 \\ -0.01 \\ +0.01 \\ +0.08 \\ -0.44 \\ +0.59 \\ +0.39 \\ +0.62 \\ -0.58 \end{array}$	$\begin{array}{r} 6 \\ +3.01 \\ -0.01 \\ -0.09 \\ -0.12 \\ -0.06 \\ -0.85 \\ -0.14 \\ -0.38 \\ -0.48 \\ -0.59 \\ +0.55 \end{array}$	$\begin{array}{r} 7 \\ -2.53 \\ -0.04 \\ -0.30 \\ -0.29 \\ -0.04 \\ -2.26 \\ +0.49 \\ -1.40 \\ -0.15 \\ -0.31 \\ +0.59 \end{array}$	$\begin{array}{c} \textbf{8} \\ -0.66 \\ -0.08 \\ +0.23 \\ -0.03 \\ -0.26 \\ \textbf{+0.83} \\ -0.63 \\ -0.29 \\ +0.82 \\ -0.06 \\ -0.06 \end{array}$	$\begin{array}{r} \textbf{9} \\ -1.58 \\ -0.06 \\ -1.93 \\ -0.11 \\ -0.33 \\ -0.93 \\ -0.77 \\ +0.93 \\ +0.94 \\ +0.91 \\ +0.18 \end{array}$	$\begin{array}{c} 10 \\ -0.43 \\ -0.06 \\ +0.05 \\ -0.08 \\ +0.31 \\ +0.53 \\ +0.03 \\ +0.18 \\ +0.56 \\ +0.28 \end{array}$	$\begin{array}{c} 11 \\ -0.01 \\ +0.04 \\ +0.12 \\ -0.01 \\ -0.04 \\ -0.23 \\ -0.31 \\ +0.05 \\ +0.05 \\ +0.25 \\ -0.16 \end{array}$	$\begin{array}{c} 12 \\ -1.97 \\ -0.15 \\ -1.85 \\ -0.03 \\ +0.06 \\ -0.86 \\ +0.65 \\ -0.58 \\ +0.75 \\ +0.42 \\ +0.25 \end{array}$	$\begin{array}{c} 13 \\ \hline -0.11 \\ -0.00 \\ -0.12 \\ +0.01 \\ +0.01 \\ +0.35 \\ +0.10 \\ +0.07 \\ +0.03 \\ +0.10 \\ -0.01 \end{array}$

• **0**: Default amplitude model

- 1: Alternative amplitude model with K(892) with free mass and width
- 2: Alternative amplitude model with L(1670) with free mass and width
- 3: Alternative amplitude model with L(1690) with free mass and width
- 4: Alternative amplitude model with D(1232) with free mass and width
- 5: Alternative amplitude model with L(1600), D(1600), D(1700) with free mass and width
- 6: Alternative amplitude model with free L(1405) Flatt'e widths, indicated as G1 (pK channel) and G2 (Sigmapi)
- 7: Alternative amplitude model with L(1800) contribution added with free mass and width
- 8: Alternative amplitude model with L(1810) contribution added with free mass and width
- 9: Alternative amplitude model with D(1620) contribution added with free mass and width
- 10: Alternative amplitude model in which a Relativistic Breit-Wigner is used for the K(700) contribution
- 11: Alternative amplitude model with K(700) with free mass and width
- 12: Alternative amplitude model with K(1410) contribution added with mass and width from PDG2020
- 13: Alternative amplitude model in which a Relativistic Breit-Wigner is used for the K(1430) contribution
- 14: Alternative amplitude model with K(1430) with free width
- 15: Alternative amplitude model with an additional overall exponential form factor exp(-alpha q^2) multiplying Bugg lineshapes. The exponential parameter is indicated as ``alpha''
- 16: Alternative amplitude model with free radial parameter d for the Lc resonance, indicated as dLc
- 17: Alternative amplitude model obtained using LS couplings

5.6 Average polarimetry values

The components of the **averaged polarimeter vector** $\overline{\alpha}$ are defined as:

$$\overline{\alpha}_{j}=\int I_{0}\left(\tau\right)\alpha_{j}\left(\tau\right)\mathrm{d}^{n}\tau\bigm/\int I_{0}\left(\tau\right)\,\mathrm{d}^{n}\tau$$

The averages of the norm of $\vec{\alpha}$ are computed as follows:

- $|\overline{\alpha}| = \sqrt{\overline{\alpha_x}^2 + \overline{\alpha_y}^2 + \overline{\alpha_z}^2}$, with the statistical uncertainties added in quadrature and the systematic uncertainties by taking the same formula on the extrema values of each $\overline{\alpha_j}$
- $\overline{\left|\alpha\right|} = \sqrt{\int I_0\left(\tau\right) \left|\vec{\alpha}\left(\tau\right)\right|^2 \mathrm{d}^n \tau \ \big/ \int I_0\left(\tau\right) \ \mathrm{d}^n \tau}$

Cartesian coordinates:

$$\begin{array}{rcl} \overline{\alpha_x} & = & \left(-62.6 \pm 4.5^{+8.4}_{-14.8}\right) \times 10^{-3} \\ \overline{\alpha_y} & = & \left(+8.9 \pm 8.9^{+9.1}_{-12.7}\right) \times 10^{-3} \\ \overline{\alpha_z} & = & \left(-278.0 \pm 23.7^{+12.6}_{-40.4}\right) \times 10^{-3} \\ \overline{|\alpha|} & = & \left(669.4 \pm 9.3^{+15.3}_{-10.4}\right) \times 10^{-3} \end{array}$$

Polar coordinates:

$$\begin{array}{rcl} \theta\left(\vec{\alpha}\right) &=& \arccos\left(\alpha_{z} \left/ \left|\alpha\right|\right) \\ \phi\left(\vec{\alpha}\right) &=& \pi - \operatorname{atan2}\left(\alpha_{y}, -\alpha_{x}\right) \\ \\ \left|\overline{\alpha}\right| &=& \left(+285.1 \pm 24.0^{+37.9}_{-13.8}\right) \times 10^{-3} \\ \theta\left(\overline{\alpha}\right) &=& +2.92 \pm 0.01^{+0.05}_{-0.04} \operatorname{rad} \\ &=& \left(+0.929 \pm 0.002^{+0.017}_{-0.01}\right) \times \pi \\ \phi\left(\overline{\alpha}\right) &=& +3.00 \pm 0.14^{+0.21}_{-0.09} \operatorname{rad} \\ &=& \left(+0.955 \pm 0.045^{+0.067}_{-0.028}\right) \times \pi \end{array}$$

Averaged polarimeter values for each model (and the difference with the nominal model):

Model	$\overline{\alpha}_x$	\overline{lpha}_y	$\overline{\alpha}_z$	$\overline{ \alpha }$	$\Delta \overline{\alpha}_x$	$\Delta \overline{\alpha}_y$	$\Delta \overline{\alpha}_z$	$\Delta \overline{ \alpha }$
0	-62.6	+8.9	-278.0	669.4				
1	-61.6	+8.5	-279.4	670.7	+1.0	-0.4	-1.4	+1.3
2	-62.9	+9.1	-278.4	669.8	-0.3	+0.2	-0.5	+0.4
3	-58.4	+7.4	-276.2	667.7	+4.2	-1.5	+1.8	-1.6
4	-69.3	+9.5	-277.2	666.9	-6.6	+0.6	+0.8	-2.5
5	-70.7	+9.6	-277.4	668.7	-8.0	+0.8	+0.6	-0.6
6	-69.7	+9.1	-281.7	673.0	-7.1	+0.2	-3.8	+3.7
7	-77.4	+18.0	-305.4	671.4	-14.8	+9.1	-27.5	+2.1
8	-55.8	+10.9	-284.6	675.5	+6.8	+2.0	-6.7	+6.1
9	-66.9	+4.4	-290.4	672.8	-4.3	-4.5	-12.4	+3.5
10	-56.4	+2.4	-265.4	659.0	+6.2	-6.5	+12.6	-10.4
11	-64.7	+9.3	-278.6	670.4	-2.1	+0.4	-0.6	+1.0
12	-75.1	+1.8	-283.4	663.5	-12.5	-7.1	-5.4	-5.8
13	-61.8	+8.1	-277.3	668.8	+0.9	-0.8	+0.7	-0.6
14	-62.2	+8.7	-277.6	669.2	+0.5	-0.2	+0.4	-0.2
15	-54.2	-3.8	-318.4	684.6	+8.4	-12.7	-40.4	+15.3
16	-62.1	+8.2	-278.1	669.5	+0.5	-0.7	-0.1	+0.2
17	-58.1	+12.1	-278.6	666.5	+4.5	+3.2	-0.6	-2.9

Model	$ 10^3 \cdot \overline{\alpha} $	$\theta\left(\overline{\alpha}\right)/\pi$	$\phi\left(\overline{\alpha}\right)/\pi$	$10^3 \cdot \Delta \overline{\alpha} $	$\Delta \theta \left(\overline{\alpha} ight) / \pi$	$\Delta\phi\left(\overline{\alpha} ight)/\pi$
0	+285.1	+0.929	+0.955			
1	+286.2	+0.930	+0.956	+1.1	+0.001	+0.001
2	+285.6	+0.929	+0.954	+0.5	-0.000	-0.001
3	+282.4	+0.933	+0.960	-2.7	+0.004	+0.005
4	+285.8	+0.921	+0.956	+0.8	-0.007	+0.001
5	+286.4	+0.920	+0.957	+1.4	-0.009	+0.002
6	+290.4	+0.922	+0.959	+5.3	-0.007	+0.004
7	+315.6	+0.919	+0.927	+30.5	-0.010	-0.028
8	+290.3	+0.937	+0.939	+5.2	+0.008	-0.017
9	+298.0	+0.928	+0.979	+12.9	-0.001	+0.024
10	+271.3	+0.933	+0.987	-13.8	+0.004	+0.031
11	+286.2	+0.927	+0.955	+1.1	-0.002	-0.000
12	+293.2	+0.918	+0.992	+8.1	-0.011	+0.037
13	+284.2	+0.930	+0.958	-0.9	+0.001	+0.003
14	+284.6	+0.929	+0.956	-0.5	+0.000	+0.001
15	+323.0	+0.946	+1.022	+37.9	+0.017	+0.067
16	+285.1	+0.929	+0.958	-0.0	+0.001	+0.003
17	+284.8	+0.933	+0.935	-0.2	+0.004	-0.021

Tip: These values can be downloaded in serialized JSON format under Exported distributions (page 42).

<Figure size 1100x500 with 2 Axes>

<Figure size 1100x500 with 2 Axes>

<Figure size 900x500 with 2 Axes>

<Figure size 900x500 with 2 Axes>

5.6. Average polarimetry values

Tip: A potential explanation for the xz-correlation may be found in Section XZ-correlations (page 46).

5.7 Exported distributions

The polarimetry fields are computed for each parameter bootstrap (statistics & systematics) and for each model on lc2pkpi-polarimetry.docs.cern.ch/uncertainties.html. All combined fields can be downloaded as single compressed TAR file under lc2pkpi-polarimetry.docs.cern.ch/_static/export/polarimetry-field.json and as a single JSON file under lc2pkpi-polarimetry.docs.cern.ch/_static/export/polarimetry-field.tar.gz.

Tip: See *Import and interpolate* (page 59) for how to use these grids in an analysis and see *Determination of polarization* (page 64) for how to use these fields to determine the polarization from a measured distribution.

AVERAGE POLARIMETER PER RESONANCE

6.1 Computations

Generating intensity	-based sample:	0%	0/100000 [00:00 , ?it/s]</td <td></td>	

6.2 Result and comparison

LHCb values are taken from the original study [1]:

	this study	LHCb	1	2	3	4	5	6	7	8	9	10	
K(700)	$+63\pm78^{+238}_{-235}$	$+60 \pm 660 \pm 240$	-5	-14	-55	-113	-100	+57	-176	-235	+238	+96	-
K(892)	$+29 \pm 15^{+31}_{-17}$		+2	-0	+2	-9	-17	+2	-5	+23	+31	-8	
K(1430)	$-339 \pm 28^{+139}_{-102}$	$-340 \pm 30 \pm 140$	+3	+3	-1	-2	+45	+102	+125	-9	-102	+139	-
$\Lambda(1405)$	$+580 \pm 31^{+278}_{-122}$	$-580\pm50\pm280$	+14	-7	+3	+31	-3	-30	-122	-22	+124	-64	-
$\Lambda(1520)$	$+925\pm8^{+16}_{-84}$	$-925\pm25\pm84$	+7	+2	+2	+16	-34	+2	+8	+11	+7	-3	
$\Lambda(1600)$	$+199 \pm 51^{+499}_{-428}$	$-200\pm60\pm500$	+10	-5	+14	-5	+21	+138	+100	+499	-428	-140	-
$\Lambda(1670)$	$+817 \pm 15^{+73}_{-46}$	$-817\pm42\pm73$	+9	-10	+12	+70	-41	-5	+73	+30	+47	-46	-
$\Lambda(1690)$	$+958\pm8^{+27}_{-35}$	$-958\pm20\pm27$	-3	+6	-12	-35	-14	+22	+27	-20	+3	-4	
$\Lambda(2000)$	$-573 \pm 9^{+124}_{-191}$	$+570 \pm 30 \pm 190$	+9	-1	+12	+47	-24	-45	-191	+58	+85	+78	-
$\Delta(1232)$	$+548\pm8^{+36}_{-27}$	$-548 \pm 14 \pm 36$	+9	+0	-9	-14	+17	-1	+10	+36	+5	-11	
$\Delta(1600)$	$-502\pm9^{+162}_{-112}$	$+500 \pm 50 \pm 170$	+19	+10	+6	+107	-112	+115	+88	+49	+162	+5	-
$\Delta(1700)$	$+216\pm18^{+42}_{-75}$	$-216\pm36\pm75$	+40	+4	-0	-19	-2	+23	+16	+42	+23	-75	

 Λ_c polarimetry using the dominant hadronic mode — supplemental material, 0.0.9 (18/01/2023 22:58:41)

6.3 Distribution analysis

Statistical distribution of weighted \overline{a}_z

Resonance

Systematics distribution of weighted \overline{a}_z

6.3.1 XZ-correlations

It follows from the definition of $\vec{\alpha}$ for a single resonance that:

$$\begin{array}{rcl} \alpha_x &=& |\vec{\alpha}| \int I_0 \sin\left(\zeta^0\right) \, \mathrm{d}\tau \big/ \int I_0 \, \mathrm{d}\tau \\ \alpha_z &=& |\vec{\alpha}| \int I_0 \cos\left(\zeta^0\right) \, \mathrm{d}\tau \big/ \int I_0 \, \mathrm{d}\tau \end{array}$$

This means that the correlation if 100% if I_0 does not change in the bootstrap. This may explain the xz-correlation observed for $\overline{\alpha}$ over the complete decay as reported in Average polarimetry values (page 40).

$$\begin{split} I_{L(2000)} &= \frac{155.425\sigma_2^2}{\left|\sigma_2(\sigma_2 - 3.953) + 0.79i\sqrt{0.445\sigma_2^2 - \sigma_2 + 0.18}\right|^2} \\ &\alpha_{x,L(2000)} &= -0.572\sin\left(\zeta_{2(1)}^0\right) \\ &\alpha_{z,L(2000)} &= -0.572\cos\left(\zeta_{2(1)}^0\right) \end{split}$$

<Figure size 1200x800 with 12 Axes>

<Figure size 1200x800 with 12 Axes>

Systematics distribution of weighted \overline{a}_{xz}

Systematics distribution of weighted \overline{a}_{xz}

 Λ_c polarimetry using the dominant hadronic mode — supplemental material, 0.0.9 (18/01/2023 22:58:41)

CHAPTER SEVEN

APPENDIX

7.1 Dynamics lineshapes

$$\begin{split} F_L\left(z\right) &= \begin{cases} 1 & \text{for } L = 0 \\ \frac{1}{\sqrt{z^2 + 1}} & \text{for } L = 1 \\ \frac{1}{\sqrt{z^4 + 3z^2 + 9}} & \text{for } L = 2 \end{cases} \\ \lambda\left(x, y, z\right) &= x^2 - 2xy - 2xz + y^2 - 2yz + z^2 \\ p_{m_i, m_j}\left(s\right) &= \frac{\sqrt{\lambda\left(s, m_i^2, m_j^2\right)}}{2\sqrt{s}} \\ q_{m_0, m_k}\left(s\right) &= \frac{\sqrt{\lambda\left(s, m_i^2, m_j^2\right)}}{2m_0} \\ \Gamma\left(s\right) &= \Gamma_0 \frac{m}{\sqrt{s}} \frac{F_{l_R}\left(Rp_{m_1, m_2}(s)\right)^2}{F_{l_R}\left(Rp_{m_1, m_2}(m^2)\right)^2} \left(\frac{p_{m_1, m_2}(s)}{p_{m_1, m_2}(m^2)}\right)^{2l_R + 1} \end{split}$$

7.1.1 Relativistic Breit-Wigner

$$\mathcal{R}(s) \ = \ \frac{\frac{F_{l_{R}}\left(R_{\rm res}p_{m_{1},m_{2}}(s)\right)}{F_{l_{A_{c}}}\left(R_{A_{c}}q_{m_{\rm top}},m_{\rm spectator}(s)\right)}\left(\frac{p_{m_{1},m_{2}}(s)}{p_{m_{1},m_{2}}(m^{2})}\right)^{l_{R}}\left(\frac{q_{m_{\rm top}},m_{\rm spectator}(s)}{q_{m_{\rm top}},m_{\rm spectator}(m^{2})}\right)^{l_{A_{c}}}}{m^{2}-im\Gamma(s)-s}$$

7.1.2 Bugg Breit-Wigner

$$\begin{split} \mathcal{R}_{\mathrm{Bugg}} \left(m_{K\pi}^2 \right) &= \frac{1}{-\frac{i\Gamma_0 m_0 (m_{K\pi}^2 - s_A) e^{-\gamma m_{K\pi}^2}}{m_0^2 - s_A} + m_0^2 - m_{K\pi}^2}} \\ s_A &= m_K^2 - \frac{m_{\pi}^2}{2} \\ p_{m_K,m_{\pi}} \left(m_{K\pi}^2 \right) &= \frac{\sqrt{\lambda(m_{K\pi}^2, m_K^2, m_{\pi}^2)}}{2\sqrt{m_{K\pi}^2}} \end{split}$$

One of the models uses a Bugg Breit-Wigner with an exponential factor:

$$e^{-\alpha q_{m_0,m_1}(s)^2} \mathcal{R}_{\mathrm{Bugg}}\left(m_{K\pi}^2\right)$$

7.1.3 Flatté for S-waves

$$\mathcal{R}_{\rm Flatté}\left(s\right) \ = \ \frac{1}{m^2 - im \left(\frac{\Gamma_1 m p_{m_{11},m_{21}}(s)}{\sqrt{s} p_{m_{12},m_{22}}(m^2)} + \frac{\Gamma_2 m p_{m_{12},m_{22}}(s)}{\sqrt{s} p_{m_{12},m_{22}}(m^2)}\right) - s}$$

7.2 DPD angles

Equation (A1) from [2]:

$$\begin{array}{lcl} \theta_{12} & = & \arccos\left(\frac{2\sigma_3(-m_1^2-m_3^2+\sigma_2)-(m_0^2-m_3^2-\sigma_3)(m_1^2-m_2^2+\sigma_3)}{\sqrt{\lambda(m_0^2,m_3^2,\sigma_3)}\sqrt{\lambda(\sigma_3,m_1^2,m_2^2)}}\right)\\ \theta_{23} & = & \arccos\left(\frac{2\sigma_1(-m_1^2-m_2^2+\sigma_3)-(m_0^2-m_1^2-\sigma_1)(m_2^2-m_3^2+\sigma_1)}{\sqrt{\lambda(m_0^2,m_1^2,\sigma_1)}\sqrt{\lambda(\sigma_1,m_2^2,m_3^2)}}\right)\\ \theta_{31} & = & \arccos\left(\frac{2\sigma_2(-m_2^2-m_3^2+\sigma_1)-(m_0^2-m_2^2-\sigma_2)(-m_1^2+m_3^2+\sigma_2)}{\sqrt{\lambda(m_0^2,m_2^2,\sigma_2)}\sqrt{\lambda(\sigma_2,m_3^2,m_1^2)}}\right)\\ \end{array}\right)$$

Equation (A3):

$$\begin{split} \hat{\theta}_{3(1)} &= & \arccos \left(\begin{array}{ccc} \frac{-2m_0^2(-m_1^2 - m_3^2 + \sigma_2) + (m_0^2 + m_1^2 - \sigma_1)(m_0^2 + m_3^2 - \sigma_3)}{\sqrt{\lambda(m_0^2, m_1^2, \sigma_1)}\sqrt{\lambda(m_0^2, \sigma_3, m_3^2)}} \right) \\ \hat{\theta}_{1(2)} &= & \arccos \left(\begin{array}{ccc} \frac{-2m_0^2(-m_1^2 - m_2^2 + \sigma_3) + (m_0^2 + m_1^2 - \sigma_1)(m_0^2 + m_2^2 - \sigma_2)}{\sqrt{\lambda(m_0^2, m_2^2, \sigma_2)}\sqrt{\lambda(m_0^2, \sigma_1, m_1^2)}} \right) \\ \hat{\theta}_{2(3)} &= & \arccos \left(\begin{array}{ccc} \frac{-2m_0^2(-m_2^2 - m_3^2 + \sigma_1) + (m_0^2 + m_2^2 - \sigma_2)(m_0^2 + m_3^2 - \sigma_3)}{\sqrt{\lambda(m_0^2, m_3^2, \sigma_3)}\sqrt{\lambda(m_0^2, \sigma_2, m_2^2)}} \right) \end{split}$$

Equations (A7):

$$\begin{array}{lcl} \zeta_{1(3)}^{1} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{1}^{2}(-m_{0}^{2}-m_{2}^{2}+\sigma_{2})+(m_{0}^{2}+m_{1}^{2}-\sigma_{1})(-m_{1}^{2}-m_{2}^{2}+\sigma_{3})}{\sqrt{\lambda(m_{0}^{2},m_{1}^{2},\sigma_{1})}\sqrt{\lambda(\sigma_{3},m_{1}^{2},m_{2}^{2})}} \right) \\ \zeta_{2(1)}^{1} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{1}^{2}(-m_{0}^{2}-m_{3}^{2}+\sigma_{3})+(m_{0}^{2}+m_{1}^{2}-\sigma_{1})(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})}{\sqrt{\lambda(m_{0}^{2},m_{1}^{2},\sigma_{1})}\sqrt{\lambda(\sigma_{2},m_{1}^{2},m_{3}^{2})}} \right) \\ \zeta_{2(1)}^{2} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{2}^{2}(-m_{0}^{2}-m_{3}^{2}+\sigma_{3})+(m_{0}^{2}+m_{2}^{2}-\sigma_{2})(-m_{2}^{2}-m_{3}^{2}+\sigma_{1})}{\sqrt{\lambda(m_{0}^{2},m_{2}^{2},\sigma_{2})}\sqrt{\lambda(\sigma_{1},m_{2}^{2},m_{3}^{2})}} \right) \\ \zeta_{3(2)}^{2} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{2}^{2}(-m_{0}^{2}-m_{1}^{2}+\sigma_{1})+(m_{0}^{2}+m_{2}^{2}-\sigma_{2})(-m_{1}^{2}-m_{2}^{2}+\sigma_{3})}{\sqrt{\lambda(m_{0}^{2},m_{2}^{2},\sigma_{2})}\sqrt{\lambda(\sigma_{3},m_{2}^{2},m_{1}^{2})}} \right) \\ \zeta_{3(2)}^{3} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{3}^{2}(-m_{0}^{2}-m_{1}^{2}+\sigma_{1})+(m_{0}^{2}+m_{3}^{2}-\sigma_{3})(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})}{\sqrt{\lambda(m_{0}^{2},m_{3}^{2},\sigma_{3})}\sqrt{\lambda(\sigma_{2},m_{3}^{2},m_{1}^{2})}} \right) \\ \zeta_{3(2)}^{3} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{3}^{2}(-m_{0}^{2}-m_{1}^{2}+\sigma_{1})+(m_{0}^{2}+m_{3}^{2}-\sigma_{3})(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})}{\sqrt{\lambda(m_{0}^{2},m_{3}^{2},\sigma_{3})}\sqrt{\lambda(\sigma_{2},m_{3}^{2},m_{1}^{2})}} \right) \\ \zeta_{3(1)}^{3} & = & \operatorname*{acos} \left(\begin{array}{c} \frac{2m_{3}^{2}(-m_{0}^{2}-m_{1}^{2}+\sigma_{2})+(m_{0}^{2}+m_{3}^{2}-\sigma_{3})(-m_{2}^{2}-m_{3}^{2}+\sigma_{2})}{\sqrt{\lambda(m_{0}^{2},m_{3}^{2},\sigma_{3})}\sqrt{\lambda(\sigma_{2},m_{3}^{2},m_{1}^{2})}} \right) \\ \end{array} \right) \end{array}$$

Equations (A10):

$$\begin{split} \zeta_{2(3)}^{1} &= & \operatorname{acos} \left(\frac{2m_{1}^{2}(m_{2}^{2}+m_{3}^{2}-\sigma_{1})+(-m_{1}^{2}-m_{2}^{2}+\sigma_{3})(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})}{\sqrt{\lambda(\sigma_{2},m_{3}^{2},m_{1}^{2})}\sqrt{\lambda(\sigma_{3},m_{1}^{2},m_{2}^{2})}} \right) \\ \zeta_{3(1)}^{2} &= & \operatorname{acos} \left(\frac{2m_{2}^{2}(m_{1}^{2}+m_{3}^{2}-\sigma_{2})+(-m_{1}^{2}-m_{2}^{2}+\sigma_{3})(-m_{2}^{2}-m_{3}^{2}+\sigma_{1})}{\sqrt{\lambda(\sigma_{1},m_{2}^{2},m_{3}^{2})}\sqrt{\lambda(\sigma_{3},m_{1}^{2},m_{2}^{2})}} \right) \\ \zeta_{1(2)}^{3} &= & \operatorname{acos} \left(\frac{2m_{3}^{2}(m_{1}^{2}+m_{2}^{2}-\sigma_{3})+(-m_{1}^{2}-m_{3}^{2}+\sigma_{2})(-m_{2}^{2}-m_{3}^{2}+\sigma_{1})}{\sqrt{\lambda(\sigma_{1},m_{2}^{2},m_{3}^{2})}\sqrt{\lambda(\sigma_{2},m_{3}^{2},m_{1}^{2})}} \right) \end{split}$$

7.3 Phase space sample

7.3.1 Definition

See also:

AmpForm's Kinematics page.

$$\begin{cases} 1 & \text{for } \phi\left(\sigma_{i},\sigma_{j}\right) \leq 0\\ \text{NaN otherwise} \end{cases}$$

$$\phi\left(\sigma_{i},\sigma_{j}\right) = \lambda\left(\lambda\left(\sigma_{j},m_{j}^{2},m_{0}^{2}\right),\lambda\left(\sigma_{k},m_{k}^{2},m_{0}^{2}\right),\lambda\left(\sigma_{i},m_{i}^{2},m_{0}^{2}\right)\right)$$

$$\lambda\left(x,y,z\right) = x^{2} - 2xy - 2xz + y^{2} - 2yz + z^{2}$$

$$\sigma_{k} = m_{0}^{2} + m_{1}^{2} + m_{2}^{2} + m_{3}^{2} - \sigma_{i} - \sigma_{j}$$

7.3.2 Visualization

$$\begin{array}{rcl} m_0 &=& 2.28646 \\ m_1 &=& 0.938272046 \\ m_2 &=& 0.13957018 \\ m_3 &=& 0.49367700000000003 \end{array}$$

<Figure size 500x500 with 1 Axes>

7.4 Alignment consistency

 $\sum_{\lambda_{0}=-1/2}^{1/2} \sum_{\lambda_{1}=-1/2}^{1/2} \left| \sum_{\lambda_{0}'=-1/2}^{1/2} \sum_{\lambda_{1}'=-1/2}^{1/2} A_{\lambda_{0}',\lambda_{1}',0,0}^{1} d_{\lambda_{1}',\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{1(1)}^{1} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{1(1)}^{0} \right) + A_{\lambda_{0}',\lambda_{1}',0,0}^{2} d_{\lambda_{1}',\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{2(1)}^{0} \right) + A_{\lambda_{0}',\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(1)}^{1} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(1)}^{0} \right) + A_{\lambda_{0}',\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(1)}^{1} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(1)}^{0} \right) + A_{\lambda_{0}',\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(1)}^{1} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{1(1)}^{1} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{1(2)}^{0} \right) + A_{\lambda_{0}',\lambda_{1}',0,0}^{\frac{1}{2}} d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(2)}^{1} \right) + A_{\lambda_{0}',\lambda_{1}',0,0}^{\frac{1}{2}} d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(2)}^{0} \right) + A_{\lambda_{0}',\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(2)}^{1} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{1(2)}^{0} \right) d_{\lambda_{1}',\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{1(2)}^{0} \right) d_{\lambda_{1}',\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{1(2)}^{0} \right) d_{\lambda_{1}',\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{2(2)}^{0} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}} \left(\zeta_{2(2)}^{0} \right) d_{\lambda_{0},\lambda_{0}'}^{\frac{1}{2}}$

See *DPD angles* (page 52) for the definition of each $\zeta_{i(k)}^{i}$.

Note that a change in reference sub-system requires the production couplings for certain sub-systems to flip sign:

- Sub-system 2 as reference system: flip signs of $\mathcal{H}_{K^{**}}^{\text{production}}$ and $\mathcal{H}_{L^{**}}^{\text{production}}$

• Sub-system 3 as reference system: flip signs of $\mathcal{H}_{K^{**}}^{\text{production}}$ and $\mathcal{H}_{D^{**}}^{\text{production}}$

```
{1: Array(3.91663029e+08, dtype=float64),
2: Array(3.91663029e+08, dtype=float64),
```


7.5 Benchmarking

Tip: This notebook benchmarks JAX on a **single CPU core**. Compare with Julia results as reported in Com-PWA/polarimetry#27. See also the Extended benchmark #68 discussion.

Note: This notebook uses only one run and one loop for %timeit, because JAX seems to cache its return values.

```
Physical cores: 8
Total cores: 8
```

```
CPU times: user 25 s, sys: 0 ns, total: 25 s
Wall time: 25.1 s
```

7.5.1 DataTransformer performance

Generating intensity-based sample: 0%| | 0/100000 [00:00<?, ?it/s]

524 ms \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each) 25.5 ms \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each) 25.6 ms \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)

```
483 ms \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)
2.73 ms \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)
1.99 ms \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)
```

7.5.2 Parametrized function

Compare All parameters substituted (page 57).

Total number of mathematical operations:

- *α_x*: 133,630
- *α_y*: 133,634
- *α_z*: 133,630
- *I*_{tot}: 43,198

CPU times: user 23.5 ms, sys: 0 ns, total: 23.5 ms Wall time: 23.2 ms

One data point

JIT-compilation

<TimeitResult : 2.05 s \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)>

<TimeitResult : 10.8 s \pm 0 ns per loop (mean \pm std. dev. of 1 run, 1 loop each)>

Compiled performance

<timeitresult< th=""><th>:</th><th>1.41</th><th>. ms</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mear</th><th>1 ±</th><th>± std.</th><th>. dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop e</th><th>each)></th></timeitresult<>	:	1.41	. ms	±	0	ns	per	loop	(mear	1 ±	± std.	. dev.	of	1	run,	1	loop e	each)>
<timeitresult< td=""><td>:</td><td>2.2</td><td>ms</td><td>±</td><td>0 r</td><td>ns j</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1 :</td><td>run,</td><td>1</td><td>loop ea</td><td>ach)></td></timeitresult<>	:	2.2	ms	±	0 r	ns j	per	loop	(mean	±	std.	dev.	of	1 :	run,	1	loop ea	ach)>

54x54 grid sample

Compiled but uncached

<timeitresult< th=""><th>:</th><th>2.31</th><th>S</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mean</th><th>±</th><th>std.</th><th>dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop</th><th>each)></th></timeitresult<>	:	2.31	S	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>
<timeitresult< td=""><td>:</td><td>13.3</td><td>s</td><td>±</td><td>0</td><td>ns</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop</td><td>each)></td></timeitresult<>	:	13.3	s	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>

Second run with cache

<timeitresult< th=""><th>:</th><th>3.84</th><th>ms</th><th>±</th><th>0 n</th><th>s pe</th><th>er l</th><th>Loop</th><th>(mea</th><th>n</th><th>± st</th><th>d. c</th><th>lev.</th><th>of</th><th>1</th><th>run</th><th>,</th><th>1 loc</th><th>op e</th><th>each)</th><th>></th><th></th></timeitresult<>	:	3.84	ms	±	0 n	s pe	er l	Loop	(mea	n	± st	d. c	lev.	of	1	run	,	1 loc	op e	each)	>	
<timeitresult< td=""><td>:</td><td>19 m</td><td>s ±</td><td>0</td><td>ns</td><td>per</td><td>loc</td><td>p (r</td><td>nean</td><td>±</td><td>std.</td><td>dev</td><td>7.0</td><td>f 1</td><td>rι</td><td>ın,</td><td>1</td><td>loop</td><td>eac</td><td>:h)></td><td></td><td></td></timeitresult<>	:	19 m	s ±	0	ns	per	loc	p (r	nean	±	std.	dev	7.0	f 1	rι	ın,	1	loop	eac	:h)>		

100.000 event phase space sample

Compiled but uncached

<TimeitResult : 2.33 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)>
<TimeitResult : 13.1 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)>

Second run with cache

<TimeitResult : 63.5 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)>
<TimeitResult : 235 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)>

Recompilation after parameter modification

Compiled but uncached

<timeitresult< th=""><th>:</th><th>2.33</th><th>S</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mean</th><th>±</th><th>std.</th><th>dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop</th><th>each)></th></timeitresult<>	:	2.33	S	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>
<timeitresult< td=""><td>:</td><td>13.3</td><td>s</td><td>±</td><td>0</td><td>ns</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop</td><td>each)></td></timeitresult<>	:	13.3	s	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>

Second run with cache

<TimeitResult : 53.9 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)>
<TimeitResult : 286 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)>

7.5.3 All parameters substituted

Compare Parametrized function (page 56).

Number of mathematical operations after substituting all parameters:

- α_x : 29,552
- *α_y*: 29,556
- *α_z*: 29,552
- *I*_{tot}: 9,624

```
CPU times: user 11.8 ms, sys: 0 ns, total: 11.8 ms Wall time: 12.2 ms
```

One data point

JIT-compilation

<timeitresult< th=""><th>:</th><th>1.48</th><th>S</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mean</th><th>±</th><th>std.</th><th>dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop</th><th>each)></th><th></th></timeitresult<>	:	1.48	S	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>	
<timeitresult< td=""><td>:</td><td>7.45</td><td>s</td><td>±</td><td>0</td><td>ns</td><td>per</td><td>qool</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop</td><td>each)></td><td></td></timeitresult<>	:	7.45	s	±	0	ns	per	qool	(mean	±	std.	dev.	of	1	run,	1	loop	each)>	

Compiled performance

<timeitresult< th=""><th>:</th><th>282</th><th>μs</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mean</th><th>±</th><th>std.</th><th>dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop</th><th>each)></th></timeitresult<>	:	282	μs	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>
<timeitresult< td=""><td>:</td><td>303</td><td>μs</td><td>±</td><td>0</td><td>ns</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop</td><td>each)></td></timeitresult<>	:	303	μs	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>

54x54 grid sample

Compiled but uncached

<timeitresult< th=""><th>:</th><th>1.62</th><th>S</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mean</th><th>±</th><th>std.</th><th>dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop</th><th>each)></th></timeitresult<>	:	1.62	S	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>
<timeitresult< td=""><td>:</td><td>8.64</td><td>S</td><td>±</td><td>0</td><td>ns</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop</td><td>each)></td></timeitresult<>	:	8.64	S	±	0	ns	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>

Second run with cache

<timeitresult< th=""><th>:</th><th>4.77</th><th>ms</th><th>±</th><th>0 n</th><th>s per</th><th>loop</th><th>(mean</th><th>±</th><th>std.</th><th>dev.</th><th>of</th><th>1</th><th>run,</th><th>1</th><th>loop</th><th>each)></th></timeitresult<>	:	4.77	ms	±	0 n	s per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>
<timeitresult< td=""><td>:</td><td>23.1</td><td>ms</td><td>±</td><td>0 n</td><td>s per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop</td><td>each)></td></timeitresult<>	:	23.1	ms	±	0 n	s per	loop	(mean	±	std.	dev.	of	1	run,	1	loop	each)>

100.000 event phase space sample

Compiled but uncached

<timeitresult< th=""><th>:</th><th>1.69</th><th>S</th><th>3 ±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mear</th><th>ı ±</th><th>std.</th><th>dev</th><th>. of</th><th>1</th><th>run,</th><th>1</th><th>loop e</th><th>each)></th></timeitresult<>	:	1.69	S	3 ±	0	ns	per	loop	(mear	ı ±	std.	dev	. of	1	run,	1	loop e	each)>
<timeitresult< td=""><td>:</td><td>8.9</td><td>S</td><td>±</td><td>0 :</td><td>ns j</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop ea</td><td>ach)></td></timeitresult<>	:	8.9	S	±	0 :	ns j	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop ea	ach)>

Second run with cache

<timeitresult< th=""><th>:</th><th>46.8</th><th>8 ms</th><th>±</th><th>0</th><th>ns</th><th>per</th><th>loop</th><th>(mear</th><th>ı 4</th><th>std</th><th>. dev</th><th>. of</th><th>1</th><th>run,</th><th>-</th><th>l loop</th><th>each)</th><th>></th></timeitresult<>	:	46.8	8 ms	±	0	ns	per	loop	(mear	ı 4	std	. dev	. of	1	run,	-	l loop	each)	>
<timeitresult< td=""><td>:</td><td>301</td><td>ms</td><td>±</td><td>0 r</td><td>ns p</td><td>per</td><td>loop</td><td>(mean</td><td>±</td><td>std.</td><td>dev.</td><td>of</td><td>1</td><td>run,</td><td>1</td><td>loop e</td><td>each)></td><td>></td></timeitresult<>	:	301	ms	±	0 r	ns p	per	loop	(mean	±	std.	dev.	of	1	run,	1	loop e	each)>	>

7.5.4 Summary

```
<pandas.io.formats.style.Styler at 0x7f841b7539d0>
```

7.6 Serialization

7.6.1 File size checks

File sizes for 100x100 grid:

File type	Size
export/alpha-x-arrays.json	141 kB
export/alpha-x-pandas.json	311 kB
export/alpha-x-python.json	260 kB
export/alpha-x-pandas-json.zip	51 kB
export/alpha-x-pandas.csv	129 kB

7.6.2 Export polarimetry grids

Decided to use the alpha-x-arrays.json format. It can be exported with *export_polarimetry_field()* (page 80).

Polarimetry grid can be downloaded here: export/polarimetry-model-0.json (540 kB).

7.6.3 Import and interpolate

The arrays in the *exported JSON files* (page 42) can be used to create a RegularGridInterpolator for the intensity and for each components of $\vec{\alpha}$.

import_polarimetry_field() (page 80) returns JAX arrays, which are read-only. RegularGridIn-terpolator requires modifiable arrays, so we convert them to NumPy.

Also note that the values array needs to be transposed!

This is a function that can compute an interpolated value of each of these observables for a random point on the Dalitz plane.

array([0.18379986])

As opposed to SciPy's deprecated interp2d, RegularGridInterpolator is already in vectorized form, so there is no need to vectorize it.

```
Generating intensity-based sample: 0%| | 0/100000 [00:00<?, ?it/s]
```

```
array([2165.82154945, 5481.04128781, 6254.96174147, ..., 1369.40657535, 4456.44114915, 7197.97782088])
```


Note: The interpolated values over this phase space sample have been visualized by interpolating again over a meshgrid with scipy.interpolate.griddata.

Tip: Determination of polarization (page 64) shows how this interpolation method can be used to determine the polarization \vec{P} from a given intensity distribution.

7.7 Amplitude model with LS-couplings

7.7.1 Model inspection

$$\sum_{\lambda_{0}^{\prime}=-1/2}^{1/2} \sum_{\lambda_{1}^{\prime}=-1/2}^{1/2} A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{1} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{1(1)}^{1}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{1(1)}^{0}\right) + A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{2} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{2(1)}^{1}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{1}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{0}\right) + A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{2} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{2(1)}^{0}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{1}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{0}\right) + A_{\lambda_{0}^{\prime},\lambda_{1}^{\prime}}^{2} d_{\lambda_{1}^{\prime},\lambda_{1}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{0}\right) d_{\lambda_{0},\lambda_{0}^{\prime}}^{\frac{1}{2}} \left(\zeta_{3(1)}^{0$$

Λ_c polarimetry using the dominant hadronic mode — supplemental material, 0.0.9 (18/01/2023 22:58:41)

$$\begin{split} A_{-\frac{1}{2},-\frac{1}{2}} &= \sum_{\lambda_R=-1}^{1} - \frac{\sqrt{10\delta_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}(\sigma_1)C_{\frac{3}{2},\lambda_R+\frac{1}{2}}^{\frac{1}{2}}\mathcal{Q}_{-\frac{3}{2},\lambda_R+\frac{1}{2}}^{\frac{1}{2}}\mathcal{Q}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}^{\frac{1}{2}}\mathcal{Q}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}^{\frac{1}{2}}\mathcal{Q}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R+\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R-\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{1}{2},\lambda_R}^{\frac{1}{2}}\mathcal{R}_{-\frac{$$

Λ_c polarimetry using the dominant hadronic mode — supplemental material, 0.0.9 (18/01/2023 22:58:41)

Decay	coupling			factor
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1405) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\mathcal{H}_{L(1405),0,\frac{1}{2}}^{\text{LS,production}}$	=	-1.22 - 0.0395i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1405) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\mathcal{H}_{L(1405),1,\frac{1}{2}}^{\text{LS,production}}$	=	1.81 - 1.63i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Lambda(1520) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$	$\mathcal{H}_{L(1520),1,\frac{3}{2}}^{\text{LS,production}}$	=	0.192 + 0.167i	+1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Lambda(1520) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$	$\mathcal{H}_{L(1520),2,\frac{3}{2}}^{\mathrm{LS},\mathrm{production}}$	=	-0.116 - 0.243i	-1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1600) \xrightarrow[S=1/2]{L=1} K^- p \pi^+$	$\mathcal{H}_{L(1600),0,\frac{1}{2}}^{\mathrm{LS},\mathrm{production}}$	=	0.134 + 0.628i	-1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=1} \Lambda(1600) \xrightarrow[S=1/2]{L=1} K^- p \pi^+$	$\mathcal{H}_{L(1600),1,\frac{1}{2}}^{\text{LS,production}}$	=	1.71 - 1.13i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(1670) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\mathcal{H}_{L(1670),0,\frac{1}{2}}^{\text{LS,production}}$	=	0.0092 - 0.201i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=1} \Lambda(1670) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\mathcal{H}_{L(1670),1,\frac{1}{2}}^{\text{LS,production}}$	=	0.115 + 0.168i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Lambda(1690) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$	$\mathcal{H}_{L(1690),1,\frac{3}{2}}^{\text{LS,production}}$	=	-0.379 + 0.331i	+1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Lambda(1690) \xrightarrow[S=1/2]{L=2} K^- p \pi^+$	$\mathcal{H}_{L(1690),2,\frac{3}{2}}^{\text{LS,production}}$	=	0.286 - 0.248i	-1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} \Lambda(2000) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\mathcal{H}_{L(2000),0,\frac{1}{2}}^{\text{LS,production}}$	=	2.81 + 0.0715i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=1} \Lambda(2000) \xrightarrow[S=1/2]{L=0} K^- p \pi^+$	$\mathcal{H}_{L(2000),1,\frac{1}{2}}^{\text{LS,production}}$	=	0.891 + 0.0874i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Delta(1232) \xrightarrow[S=1/2]{L=1} p\pi^+ K^-$	$\mathcal{H}^{\mathrm{LS},\mathrm{production}}_{D(1232),1,\frac{3}{2}}$	=	-1.5 + 3.16i	+1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Delta(1232) \xrightarrow[S=1/2]{L=1} p\pi^+ K^-$	$\mathcal{H}^{\mathrm{LS, production}}_{D(1232), 2, \frac{3}{2}}$	=	0.587 - 0.839i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Delta(1600) \xrightarrow[S=1/2]{L=1} p\pi^+ K^-$	$\mathcal{H}_{D(1600),1,\frac{3}{2}}^{\text{LS,production}}$	=	1.6 - 2.46i	+1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Delta(1600) \xrightarrow[S=1/2]{L=1} p\pi^+ K^-$	$\mathcal{H}_{D(1600),2,\frac{3}{2}}^{\text{LS,production}}$	=	0.432 - 0.689i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} \Delta(1700) \xrightarrow[S=1/2]{L=2} p\pi^+ K^-$	$\mathcal{H}_{D(1700),1,\frac{3}{2}}^{\text{LS,production}}$	=	-3.16 + 2.29i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} \Delta(1700) \xrightarrow[S=1/2]{L=2} p\pi^+ K^-$	$\mathcal{H}_{D(1700),2,\frac{3}{2}}^{\text{LS,production}}$	=	0.179 - 0.299i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(700) \xrightarrow[S=0]{L=0} \pi^+ K^- p$	$\mathcal{H}_{K(700),0,\frac{1}{2}}^{\text{LS,production}}$	=	-0.000167 - 0.685i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(700) \xrightarrow[S=0]{L=0} \pi^+ K^- p$	$\mathcal{H}_{K(700),1,\frac{1}{2}}^{\text{LS,production}}$	=	-0.631 + 0.0404i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$	$\mathcal{H}_{K(892),0,\frac{1}{2}}^{\text{LS,production}}$	=	1.0	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=1} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$	$\mathcal{H}_{K(892),1,\frac{1}{2}}^{\text{LS,production}}$	=	-0.342 + 0.064i	-1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=1} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$	$\mathcal{H}_{K(892),1,\frac{3}{2}}^{\text{LS,production}}$	=	-0.755 - 0.592i	+1
$\Lambda_c^+ \xrightarrow[S=3/2]{L=2} K(892) \xrightarrow[S=0]{L=1} \pi^+ K^- p$	$\mathcal{H}_{K(892),2,\frac{3}{2}}^{\text{LS,production}}$	=	-0.0938 - 0.38i	-1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=0} K(1430) \xrightarrow[S=0]{L=0} \pi^+ K^- p$	$\mathcal{H}_{K(1430),0,\frac{1}{2}}^{\text{LS,production}}$	=	-1.35 - 3.15i	+1
$\Lambda_c^+ \xrightarrow[S=1/2]{L=1} K(1430) \xrightarrow[S=0]{L=0} \pi^+ K^- p$	$\mathcal{H}_{K(1430),1,\frac{1}{2}}^{\text{LS,production}}$	=	0.598 - 0.956i	+1

It is asserted that these amplitude expressions to not evaluate to 0 once the Clebsch-Gordan coefficients are evaluated.

See also:

See Resonances and LS-scheme (page 3) for the allowed LS-values.

7.7.2 Distribution

7.7.3 Decay rates

Nominal	LS-model	Difference
7.78	7.02	-0.75
1.91	1.95	+0.03
5.16	5.21	+0.05
1.15	1.18	+0.02
1.16	1.09	-0.08
9.55	9.84	+0.30
28.73	28.97	+0.24
4.50	4.24	-0.26
3.89	3.99	+0.10
2.99	3.25	+0.26
21.95	21.25	-0.70
14.70	15.41	+0.71
	$\begin{array}{r} \textbf{Nominal} \\ \hline 7.78 \\ 1.91 \\ 5.16 \\ 1.15 \\ 1.16 \\ 9.55 \\ 28.73 \\ 4.50 \\ 3.89 \\ 2.99 \\ 21.95 \\ 14.70 \end{array}$	NominalLS-model7.787.021.911.955.165.211.151.181.161.099.559.8428.7328.974.504.243.893.992.993.2521.9521.2514.7015.41

Tip: Compare with the values with uncertainties as reported in *Decay rates* (page 39).

7.8 SU(2) \rightarrow SO(3) homomorphism

The Cornwell theorem from the group theory (see for example Section 3, Chapter 5 of [3]) gives the relation between the rotation of the transition amplitude and the physical vector of polarization sensitivity:

$$R_{ij}(\phi,\theta,\chi) = \frac{1}{2} \text{tr} \left(D^{1/2*}(\phi,\theta,\chi) \sigma_i^P D^{1/2*\dagger}(\phi,\theta,\chi) \sigma_j^P \right) \,, \tag{7.1}$$

where tr represents the trace operation applied to the product of the two-dimensional matrices, D and σ^P , and $R_{ii}(\phi, \theta, \chi)$ is a three-dimensional rotation matrix implementing the Euler transformation to a physical vector.

 $\begin{array}{c} -\sin\left(\chi\right)\sin\left(\phi\right) + \cos\left(\chi\right)\cos\left(\phi\right)\cos\left(\theta\right) & -\sin\left(\chi\right)\cos\left(\phi\right)\cos\left(\theta\right) - \sin\left(\phi\right)\cos\left(\chi\right) & \sin\left(\theta\right)\cos\left(\phi\right) \\ \sin\left(\chi\right)\cos\left(\phi\right) + \sin\left(\phi\right)\cos\left(\chi\right)\cos\left(\theta\right) & -\sin\left(\chi\right)\sin\left(\phi\right)\cos\left(\theta\right) + \cos\left(\chi\right)\cos\left(\phi\right) & \sin\left(\phi\right)\sin\left(\theta\right) \\ -\sin\left(\theta\right)\cos\left(\chi\right) & \sin\left(\chi\right)\sin\left(\theta\right) & \cos\left(\theta\right) \\ \end{array}$

 $\begin{bmatrix} -\sin(\chi)\sin(\phi) + \cos(\chi)\cos(\phi)\cos(\theta) & -\sin(\chi)\cos(\phi)\cos(\theta) - \sin(\phi)\cos(\chi) & \sin(\theta)\cos(\phi) \\ \sin(\chi)\cos(\phi) + \sin(\phi)\cos(\chi)\cos(\theta) & -\sin(\chi)\sin(\phi)\cos(\theta) + \cos(\chi)\cos(\phi) & \sin(\phi)\sin(\theta) \\ & -\sin(\theta)\cos(\chi) & \sin(\chi)\sin(\theta) & \cos(\theta) \end{bmatrix}$

7.9 Determination of polarization

Given the aligned polarimeter field $\vec{\alpha}$ and the corresponding intensity distribution I_0 , the intensity distribution I for a polarized decay can be computed as follows:

$$I(\phi,\theta,\chi;\tau) = I_0(\tau) \left(1 + \vec{P}R(\phi,\theta,\chi)\vec{\alpha}(\tau) \right)$$
(7.2)

with R the rotation matrix over the decay plane orientation, represented in Euler angles (ϕ, θ, χ) .

In this section, we show that it's possible to determine the polarization \vec{P} from a given intensity distribution I of a λ_c decay if we the $\vec{\alpha}$ fields and the corresponding I_0 values of that Λ_c decay. We get $\vec{\alpha}$ and I_0 by interpolating the grid samples provided from *Exported distributions* (page 42) using the method described in *Import and interpolate* (page 59). We perform the same procedure with the averaged aligned polarimeter vector from Section 5.6 in order to quantify the loss in precision when integrating over the Dalitz plane variables τ .

7.9.1 Polarized test distribution

For this study, a phase space sample is uniformly generated over the Dalitz plane variables τ . The phase space sample is extended with uniform distributions over the decay plane angles (ϕ, θ, χ) , so that the phase space can be used to generate a hit-and-miss toy sample for a polarized intensity distribution.

We now generate an intensity distribution over the phase space sample given a certain value for \vec{P} [1] using Eq. (7.2) and by interpolating the $\vec{\alpha}$ and I_0 fields with the grid samples for the nominal model.

7.9.2 Using the exported polarimeter grid

The generated distribution is now assumed to be a *measured distribution* I with unknown polarization \vec{P} . It is shown below that the actual \vec{P} with which the distribution was generated can be found by performing a fit on Eq. (7.2). This is done with iminuit, starting with a certain 'guessed' value for \vec{P} as initial parameters.

To avoid having to generate a hit-and-miss intensity test distribution, the parameters $\vec{P} = (P_x, P_y, P_z)$ are optimized with regard to a weighted negative log likelihood estimator:

$$\text{NLL} = -\sum_{i} w_{i} \log I_{i,\vec{P}} \left(\phi, \theta, \chi; \tau\right) \,. \tag{7.3}$$

with the normalized intensities of the generated distribution taken as weights:

$$w_i = n I_i / \sum_j^n I_j, \qquad (7.4)$$

such that $\sum w_i = n$. To propagate uncertainties, a fit is performed using the exported grids of each alternative model.

FCN = 1.127e+06 EDM = 2.58e-06 (Goal: 0.0002	1)	Nfcn = 66 time = 4.1 sec					
Valid Minimum	No E	No Parameters at limit					
Below EDM threshold (goal x	10) E	Below call lim:	it				
Covariance Hesse of	< Accurate	Accurate Pos. def. Not forced					
Name Value Hesse →Fixed	e Err Minos Err-	Minos Err+	Limit-	Limit+			
0 Px 0.217 0.0	008						
1 Py 0.011 0.0	800				_		
2 Pz -0.665 0.0	07				_		

					(continued	d from previous page))
Ì	Px	Pv	P7				
 		- 3					
Px	6.24e-05	5.25e-08	2.48e-06				
Py	5.25e-08	6.27e-05	5.86e-08				
Pz	2.48e-06	5.86e-08	5.6e-05				
L	I						

The polarization \vec{P} is determined to be (in %):

$$\begin{array}{rcl} P_x &=& +21.65^{+0.30}_{-0.62} \\ P_y &=& +1.08^{+0.02}_{-0.05} \\ P_z &=& -66.50^{+1.66}_{-0.85} \end{array}$$

with the upper and lower sign being the systematic extrema uncertainties as determined by the alternative models.

This is to be compared with the model uncertainties reported by [1]:

$$\begin{array}{rcl} P_x &=& +21.65 \pm 0.36 \\ P_y &=& +1.08 \pm 0.09 \\ P_z &=& -66.5 \pm 1.1. \end{array}$$

The polarimeter values for each model are (in %):

Model	P _x	Py	Pz	$\mathbf{P}_{\mathbf{x}}$?Р у	₽ _z
0	+21.65	+1.08	-66.5			
1	+21.59	+1.07	-66.4	-0.06	-0.01	+0.13
2	+21.63	+1.07	-66.5	-0.02	-0.00	+0.04
3	+21.69	+1.07	-66.6	+0.04	-0.01	-0.10
4	+21.65	+1.10	-66.5	+0.00	+0.02	-0.04
5	+21.68	+1.08	-66.5	+0.03	+0.01	-0.04
6	+21.51	+1.06	-66.0	-0.14	-0.02	+0.48
7	+21.18	+1.05	-65.3	-0.47	-0.03	+1.18
8	+21.34	+1.03	-65.6	-0.31	-0.05	+0.87
9	+21.34	+1.05	-65.6	-0.31	-0.03	+0.90
10	+21.95	+1.10	-67.4	+0.30	+0.02	-0.85
11	+21.61	+1.08	-66.4	-0.04	+0.00	+0.12
12	+21.70	+1.03	-66.6	+0.05	-0.05	-0.10
13	+21.67	+1.08	-66.6	+0.02	+0.00	-0.05
14	+21.66	+1.08	-66.5	+0.01	+0.00	-0.02
15	+21.03	+1.10	-64.8	-0.62	+0.02	+1.66
16	+21.64	+1.08	-66.5	-0.01	+0.00	+0.03
17	+21.67	+1.08	-66.6	+0.02	+0.00	-0.09

7.9.3 Using the averaged polarimeter vector

Equation (7.2) requires knowledge about the aligned polarimeter field $\vec{\alpha}(\tau)$ and intensity distribution $I_0(\tau)$ over all kinematic variables τ . It is, however, also possible to compute the differential decay rate from the averaged polarimeter vector $\vec{\alpha}$ (see *Average polarimetry values* (page 40)). The equivalent formula to Eq. (7.2) is:

$$\frac{8\pi^2}{\Gamma} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\chi} = 1 + \sum_{i,j} P_i R_{ij}(\phi,\theta,\chi)\overline{\alpha}_j\,,\tag{7.5}$$

We use this equation along with Eq. (7.3) to determine \vec{P} with Minuit.

	Migrad										
FCN EDM	I = 1.13 I = 6.03	51e+06 8e-08	Goal:	0.0001)		Nfcn = 56 time = 3.4 sec					
	7	Valid	Minimur	n	No E	No Parameters at limit					
Bel	.ow EDM	thres	shold (q	goal x 10)	 E	Below call lim	it				
Co	varian	ce	He	esse ok	Accurate	Pos. def.	Not force	ed			
 ⊢Fix	Name ed	Va	alue	Hesse Err	Minos Err-	Minos Err+	Limit-	Limit+			
0	Px	0.	.203	0.019							
1	Ру	-0.	.003	0.019							
⇒ 2 ↔	Pz 	-0.	.661	0.019			 				
		Px		Ру Р			<u> </u>				
Px Py Pz	0.00 -1. 2.2	00364 7e-06 9e-06	-1.7e 0.0003 -4.79e	-06 2.29e-0 367 -4.79e-0 -07 0.00036	6 7 2						

Using the averaged polarimeter vector $\vec{\overline{\alpha}}$, the polarization \vec{P} is determined to be (in %):

$$\begin{array}{rcl} P_x &=& +20.32^{+1.04}_{-2.44} \\ P_y &=& -0.26^{+0.17}_{-0.08} \\ P_z &=& -66.14^{+7.91}_{-3.32} \end{array}$$

The polarimeter values for each model are (in %):

_

Model	P _x	Py	Pz	₽ _x	?Р у	2Pz
0	+20.32	-0.26	-66.1			
1	+20.23	-0.24	-65.9	-0.08	+0.01	+0.26
2	+20.28	-0.26	-66.0	-0.04	-0.00	+0.12
3	+20.49	-0.22	-66.8	+0.18	+0.04	-0.63
4	+20.29	-0.32	-65.9	-0.03	-0.06	+0.21
5	+20.25	-0.33	-65.8	-0.07	-0.07	+0.36
6	+19.97	-0.31	-64.9	-0.35	-0.05	+1.24
7	+18.34	-0.31	-59.7	-1.98	-0.05	+6.43
8	+19.90	-0.18	-65.0	-0.42	+0.08	+1.17
9	+19.46	-0.25	-63.2	-0.85	+0.01	+2.90
10	+21.36	-0.23	-69.5	+1.04	+0.03	-3.32
11	+20.25	-0.28	-65.9	-0.07	-0.02	+0.26
12	+19.82	-0.34	-64.2	-0.49	-0.08	+1.97
13	+20.38	-0.25	-66.3	+0.06	+0.01	-0.20
14	+20.35	-0.25	-66.3	+0.04	+0.00	-0.12
15	+17.88	-0.09	-58.2	-2.44	+0.17	+7.91
16	+20.32	-0.25	-66.1	+0.00	+0.01	-0.00
17	+20.29	-0.22	-66.2	-0.03	+0.04	-0.08

Propagating extrema uncertainties

In Section 5.6, the averaged aligned polarimeter vectors with systematic model uncertainties were found to be:

observable	central	stat + syst
$\overline{\alpha}_x$ [10 ⁻³]	-62.6	14.8
$\overline{\alpha}_{y}$ [10 ⁻³]	+8.9	12.7
$\overline{\alpha}_{z}$ [10 ⁻³]	-278.0	40.4
$ \overline{\alpha} [10^{-3}]$	285.1	37.9
$\theta(\overline{\alpha})$ [π]	+0.929	0.017
$\phi(\overline{lpha})$ $[\pi]$	+0.955	0.067

This list of uncertainties is determined by the *extreme deviations* of the alternative models, whereas the uncertainties on the polarizations determined in Section 7.9.3 are determined by the averaged polarimeters of *all* alternative models. The tables below shows that there is a loss in systematic uncertainty when we propagate uncertainties by taking computing \vec{P} only with combinations of $\alpha_i - \sigma_i$, $\alpha_i + \sigma_i$ for each $i \in x, y, z$.

08	0/8 [00:00 , ?it/s]</th
0%	0/8 [00:00 , ?it/s]</td

Polarizations from $\overline{\alpha}$ in cartesian coordinates:

P_x	=	+20.32	\pm	3.60
P_y	=	-0.26	\pm	0.34
P_z	=	-66.14	\pm	11.51

Polarizations from $\overline{\alpha}$ in polar coordinates:

$$\begin{array}{rcrcrcrcrc} P_x &=& +20.32 &\pm& 3.23\\ P_y &=& -0.26 &\pm& 0.19\\ P_z &=& -66.14 &\pm& 10.08 \end{array}$$

α_x	α_y	α_z	P_x	P_y	P_z	ΔP_x	ΔP_y	ΔP_z
-62.6	8.9	-278.0	+20.32	-0.26	-66.14			
-77.4	-3.8	-318.4	+17.7	-0.25	-57.4	-2.58	+0.01	+8.7
-77.4	-3.8	-237.5	+23.3	-0.55	-74.9	+2.97	-0.30	-8.7
-77.4	+21.6	-318.4	+17.6	-0.28	-57.4	-2.72	-0.02	+8.7
-77.4	+21.6	-237.5	+23.0	-0.60	-74.7	+2.71	-0.34	-8.6
-47.8	-3.8	-318.4	+17.9	-0.04	-58.4	-2.43	+0.21	+7.8
-47.8	-3.8	-237.5	+23.9	-0.21	-77.7	+3.60	+0.05	-11.5
-47.8	+21.6	-318.4	+17.7	-0.07	-58.3	-2.57	+0.19	+7.8
-47.8	+21.6	-237.5	+23.6	-0.26	-77.5	+3.31	+0.00	-11.3
	0[]	/ F 1		л				
$ \alpha $	$H[\pi]$	$\sigma \pi $	P_{m}	P	P	ΛP	ΛP	ΛP
	0 [7]	$\varphi[n]$	x	- y	1 z	-x	Δy	Δt_z
285.1	0.929	0.955	+20.32	-0.26	-66.14	— <i>x</i>	Δy	
285.1 247.1	$0.929 \\ +0.91$	0.955 + 0.89	+20.32 +23.3	$-0.26 \\ -0.45$	$-66.14 \\ -76.1$	+3.01	-0.19	-10.0
$ \begin{array}{r} 285.1 \\ 247.1 \\ 247.1 \end{array} $	$0.929 \\ +0.91 \\ +0.91$	0.955 + 0.89 + 1.02	+20.32 +23.3 +23.5	-0.26 -0.45 -0.44	-66.14 -76.1 -75.9	+3.01 +3.23	-0.19 -0.19	-10.0 -9.8
$ \begin{array}{r} \hline 285.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ \end{array} $	$ \begin{array}{r} 0.929 \\ +0.91 \\ +0.91 \\ +0.95 \end{array} $	0.955 + 0.89 + 1.02 + 0.89	+20.32 +23.3 +23.5 +23.2	-0.26 -0.45 -0.44 -0.12	-66.14 -76.1 -75.9 -76.2	+3.01 +3.23 +2.91	-0.19 -0.19 +0.14	-10.0 -9.8 -10.1
$ \begin{array}{r} \hline 285.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ \end{array} $	$ \begin{array}{r} 0.929 \\ +0.91 \\ +0.91 \\ +0.95 \\ +0.95 \end{array} $	φ [n] 0.955 +0.89 +1.02 +0.89 +1.02	+20.32 +23.3 +23.5 +23.2 +23.4	-0.26 -0.45 -0.44 -0.12 -0.12	-66.14 -76.1 -75.9 -76.2 -76.1	+3.01 +3.23 +2.91 +3.05	-0.19 -0.19 +0.14 +0.14	-10.0 -9.8 -10.1 -10.0
$ \begin{array}{r} \hline 285.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 323.0 \\ \end{array} $	$\begin{array}{r} 0.929 \\ +0.91 \\ +0.91 \\ +0.95 \\ +0.95 \\ +0.91 \end{array}$	φ [n] 0.955 +0.89 +1.02 +0.89 +1.02 +0.89	+20.32 +23.3 +23.5 +23.2 +23.4 +17.9	-0.26 -0.45 -0.44 -0.12 -0.12 -0.35	-66.14 -76.1 -75.9 -76.2 -76.1 -58.2	+3.01 +3.23 +2.91 +3.05 -2.47	$-0.19 \\ -0.19 \\ +0.14 \\ +0.14 \\ -0.09$	-10.0 -9.8 -10.1 -10.0 +7.9
$\begin{array}{r} 285.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 247.1 \\ 323.0 \\ 323.0 \end{array}$	$\begin{array}{r} 0.929 \\ +0.91 \\ +0.91 \\ +0.95 \\ +0.95 \\ +0.91 \\ +0.91 \end{array}$	$\begin{array}{c} & \downarrow 1.1 \\ \hline 0.955 \\ +0.89 \\ +1.02 \\ +0.89 \\ +1.02 \\ +0.89 \\ +1.02 \end{array}$	+20.32 +23.3 +23.5 +23.2 +23.4 +17.9 +18.0	$\begin{array}{r} -9 \\ -0.26 \\ -0.45 \\ -0.44 \\ -0.12 \\ -0.12 \\ -0.35 \\ -0.34 \end{array}$	-66.14 -76.1 -75.9 -76.2 -76.1 -58.2 -58.1	$ \begin{array}{r} +3.01 \\ +3.23 \\ +2.91 \\ +3.05 \\ -2.47 \\ -2.30 \\ \end{array} $	$-0.19 \\ -0.19 \\ +0.14 \\ +0.14 \\ -0.09 \\ -0.08$	$\begin{array}{r} -10.0 \\ -9.8 \\ -10.1 \\ -10.0 \\ +7.9 \\ +8.0 \end{array}$
$\begin{array}{r} 285.1\\ 247.1\\ 247.1\\ 247.1\\ 247.1\\ 323.0\\ 323.0\\ 323.0\\ 323.0 \end{array}$	$\begin{array}{r} 0.929 \\ +0.91 \\ +0.91 \\ +0.95 \\ +0.95 \\ +0.91 \\ +0.91 \\ +0.91 \\ +0.95 \end{array}$	$\begin{array}{c} & \varphi [n] \\ 0.955 \\ +0.89 \\ +1.02 \\ +0.89 \\ +1.02 \\ +0.89 \\ +1.02 \\ +0.89 \end{array}$	+20.32 +23.3 +23.5 +23.2 +23.4 +17.9 +18.0 +17.8	$\begin{array}{r} -9 \\ -0.26 \\ -0.45 \\ -0.44 \\ -0.12 \\ -0.12 \\ -0.35 \\ -0.34 \\ -0.09 \end{array}$	$\begin{array}{r} -2 \\ -66.14 \\ -76.1 \\ -75.9 \\ -76.2 \\ -76.1 \\ -58.2 \\ -58.1 \\ -58.3 \end{array}$	$\begin{array}{r} +3.01 \\ +3.23 \\ +2.91 \\ +3.05 \\ -2.47 \\ -2.30 \\ -2.54 \end{array}$	$-0.19 \\ -0.19 \\ +0.14 \\ +0.14 \\ -0.09 \\ -0.08 \\ +0.17$	$\begin{array}{r} -10.0 \\ -9.8 \\ -10.1 \\ -10.0 \\ +7.9 \\ +8.0 \\ +7.8 \end{array}$
7.9.4 Increase in uncertainties

When the polarization is determined with the averaged aligned polarimeter vector $\vec{\alpha}$ instead of the aligned polarimeter vector field $\vec{\alpha}(\tau)$ over all Dalitz variables τ , the uncertainty is expected to increase by a factor $S_0/\overline{S}_0 \approx 3$, with:

$$S_0^2 = 3 \int I_0 \left| \vec{\alpha} \right|^2 \mathrm{d}^n \tau / \int I_0 \, \mathrm{d}^n \tau$$

$$\overline{S}_0^2 = 3(\overline{\alpha}_x^2 + \overline{\alpha}_y^2 + \overline{\alpha}_z^2) \,.$$
(7.6)

The following table shows the maximal deviation (systematic uncertainty) of the determined polarization \vec{P} for each alternative model (determined with the $\bar{\alpha}$ -values in cartesian coordinates). The second and third column indicate the systematic uncertainty (in %) as determined with the full vector field and with the averaged vector, respectively.

$\sigma_{\rm model}$	$\vec{\alpha}(\tau)$	$\vec{\overline{\alpha}}$	factor
P_x	0.62	2.44	3.9
P_{y}	0.05	0.17	3.5
P_z	1.66	7.91	4.8

Distribution of polarization values (systematics)

7.10 Interactive visualization

Tip: Run this notebook locally in Jupyter or online on Binder to modify parameters interactively!

CHAPTER EIGHT

BIBLIOGRAPHY

CHAPTER

POLARIMETRY

import polarimetry

```
formulate_polarimetry (builder: DalitzPlotDecompositionBuilder (page 73), reference_subsystem:
Literal[1, 2, 3] = 1) \rightarrow tuple[PoolSum, PoolSum]
```

Submodules and Subpackages

9.1 amplitude

import polarimetry.amplitude

```
class AmplitudeModel (decay: ThreeBodyDecay (page 77), intensity: Expr = 1, amplitudes: dict[Indexed,
Expr] = _Nothing.NOTHING, variables: dict[Symbol, Expr] = _Nothing.NOTHING,
parameter_defaults: dict[Symbol, float] = _Nothing.NOTHING)
```

Bases: object

decay: ThreeBodyDecay (page 77)

intensity: Expr

amplitudes: dict[Indexed, Expr]

variables: dict[Symbol, Expr]

parameter_defaults: dict[Symbol, float]

property full_expression: Expr

```
class DalitzPlotDecompositionBuilder(decay: ThreeBodyDecay (page 77), min_ls: bool = True)
Bases: object
```

formulate (*reference_subsystem: Literal*[1, 2, 3] = 1, *cleanup_summations: bool* = False) \rightarrow *AmplitudeModel* (page 73)

formulate_subsystem_amplitude ($\lambda 0$: Rational, $\lambda 1$: Rational, $\lambda 2$: Rational, $\lambda 3$: Rational, subsystem_id: Literal[1, 2, 3]) \rightarrow AmplitudeModel (page 73)

formulate_aligned_amplitude ($\lambda 0$: Rational | Symbol, $\lambda 1$: Rational | Symbol, $\lambda 2$: Rational | Symbol, $\lambda 3$: Rational | Symbol, reference_subsystem: Literal[1, 2, 3] = 1) \rightarrow tuple[PoolSum, dict[Symbol, Expr]]

```
get_indexed_base (typ: Literal['production', 'decay'], min_ls: bool = True) \rightarrow IndexedBase Get a basis to generate coupling symbols for the production or decay node.
```

class DynamicsConfigurator (*decay*: ThreeBodyDecay (*page* 77))

Bases: object

register_builder (*identifier*, *builder*: DynamicsBuilder (*page 74*)) \rightarrow None

get_builder (*identifier*) \rightarrow *DynamicsBuilder* (page 74)

property decay: ThreeBodyDecay (page 77)

class DynamicsBuilder(*args, **kwargs)

Bases: Protocol

Submodules and Subpackages

9.1.1 angles

import polarimetry.amplitude.angles

 $\texttt{formulate_scattering_angle} (\textit{state_id: int, sibling_id: int}) \rightarrow \texttt{tuple}[\texttt{Symbol, acos}]$

Formulate the scattering angle in the rest frame of the resonance.

Compute the θ_{ij} scattering angle as formulated in Eq (A1) in the DPD paper. The angle is that between particle *i* and spectator particle *k* in the rest frame of the isobar resonance (*ij*).

 $\texttt{formulate_theta_hat_angle} (\textit{isobar_id: int, aligned_subsystem: int}) \rightarrow \texttt{tuple[Symbol, acos]}$

Formulate an expression for $\theta_{i(j)}$.

```
formulate_zeta_angle (rotated_state: int, aligned_subsystem: int, reference_subsystem: int) \rightarrow tuple[Symbol, acos]
```

Formulate an expression for the alignment angle $\zeta_{i(k)}^{i}$.

9.2 lhcb

import polarimetry.lhcb

Import functions that are specifically for this LHCb analysis.

See also:

Cross-check with LHCb data (page 13)

load_model (model_file: Path | str, particle_definitions: dict[str, Particle (page 77)], model_id: int | str = 0) \rightarrow AmplitudeModel (page 73)

load_model_builder (*model_file: Path* | *str*, *particle_definitions: dict[str*, Particle (*page 77*)], *model_id: int* | str = 0) \rightarrow *DalitzPlotDecompositionBuilder* (page 73)

load_three_body_decay (resonance_names: Iterable[str], particle_definitions: dict[str, Particle (page 77)], $min_ls: bool = True) \rightarrow ThreeBodyDecay$ (page 77)

class ParameterBootstrap (*filename: Path* | *str*, *decay:* ThreeBodyDecay (*page* 77), *model_id: int* | *str* = 0)

Bases: object

A wrapper for loading parameters from model-definitions.yaml.

property values: dict[str, complex | float | int]

property uncertainties: dict[str, complex | float | int]

create_distribution (*sample_size: int, seed: int | None = None*) \rightarrow dict[str, complex | float | int]

flip_production_coupling_signs (*obj:* _*T*, subsystem_names: Iterable[Pattern]) \rightarrow _T

compute_decay_couplings (*decay*: ThreeBodyDecay (*page* 77)) \rightarrow dict[Indexed, *MeasuredParameter* (page 75)[int]]

ParameterType

Template for the parameter type of a for MeasuredParameter (page 75).

alias of TypeVar('ParameterType', complex, float)

class MeasuredParameter (value: ParameterType (page 75), hesse: ParameterType (page 75), model: ParameterType (page 75) | None = None, systematic: ParameterType (page 75) | None = None)

Bases: Generic[ParameterType (page 75)]

Data structure for imported parameter values.

MeasuredParameter.value (page 75) and hesse (page 75) are taken from the supplemental material, whereas model (page 75) and systematic (page 75) are taken from Tables 8 and 9 from the original LHCb paper [1].

value: ParameterType (page 75)

Central value of the parameter as determined by a fit with Minuit.

hesse: ParameterType (page 75)

Parameter uncertainty as determined by a fit with Minuit.

model: ParameterType (page 75) | None

Systematic uncertainties from fit bootstrapping.

systematic: ParameterType (page 75) | None

Systematic uncertainties from detector effects etc..

property uncertainty: ParameterType (page 75)

get_conversion_factor (resonance: Particle (page 77)) \rightarrow Literal[-1, 1]

 $get_conversion_factor_ls$ (resonance: Particle (page 77), L: Rational, S: Rational) \rightarrow Literal[-1, 1]

parameter_key_to_symbol (*key: str, min_ls: bool = True, particle_definitions: dict[str, Particle (page 77)]* | None = None) \rightarrow Indexed | Symbol

extract_particle_definitions (decay: ThreeBodyDecay (page 77)) \rightarrow dict[str, Particle (page 77)]

Submodules and Subpackages

9.2.1 dynamics

import polarimetry.lhcb.dynamics

See this paper, Eq. (4).

 $\begin{array}{l} \texttt{formulate_breit_wigner} (\textit{decay_chain: ThreeBodyDecayChain} (page 78)) \rightarrow \texttt{tuple}[\textit{BreitWignerMinL} \\ (page 78), \texttt{dict}[Symbol, \texttt{float}]] \end{array}$

9.2.2 particle

import polarimetry.lhcb.particle

Hard-coded particle definitions.

```
load_particles (filename: Path | str) \rightarrow dict[str, Particle (page 77)]
Load Particle (page 77) definitions from a YAML file.
```

class ResonanceJSON(*args, **kwargs)

Bases: dict
latex: str
jp: str
mass: float | str
width: float | str

9.3 data

import polarimetry.data				
create_data_transformer (<i>model</i> : AmplitudeModel (<i>page</i> 73), <i>backend</i> : $str = 'jax'$) \rightarrow SympyDataTransformer				
create_phase_space_filter (<i>decay:</i> ThreeBodyDecay (<i>page</i> 77), <i>x_mandelstam:</i> Literal[1, 2, 3] = 1, <i>y_mandelstam:</i> Literal[1, 2, 3] = 2, outside_value=nan) \rightarrow PositionalArgumentFunction				
generate_meshgrid_sample (<i>decay:</i> ThreeBodyDecay (<i>page</i> 77), <i>resolution: int</i> , <i>x_mandelstam:</i> Literal[1, 2, 3] = 1, <i>y_mandelstam:</i> Literal[1, 2, 3] = 2) \rightarrow Dict[str, ndarray]				
Generate a numpy.meshgrid sample for plotting with matplotlib.pyplot.				

```
\Lambda_c polarimetry using the dominant hadronic mode — supplemental material, 0.0.9 (18/01/2023 22:58:41)
```

 $generate_sub_meshgrid_sample (decay: ThreeBodyDecay (page 77), resolution: int, x_range: tuple[float, float], y_range: tuple[float, float], x_mandelstam: Literal[1, 2, 3] = 1, y_mandelstam: Literal[1, 2, 3] = 2) \rightarrow DataSample$

generate_phasespace_sample (decay: ThreeBodyDecay (page 77), n_events: int, seed: int | None = None) \rightarrow DataSample

Generate a uniform distribution over Dalitz variables $\sigma_{1,2,3}$.

 $\label{eq:compute_dalitz_boundaries} \ensuremath{\textit{compute_dalitz_boundaries}} (\ensuremath{\textit{decay:}}\xspace \ensuremath{\textit{ThreeBodyDecay}}\xspace(page 77)) \rightarrow \ensuremath{\textit{tuple[float, float]}\xspace, float]} \ensuremath{\textit{tuple[float, float]}\xspace} \ensuremath{\textit{tuple[float, float]}\xspace} \ensuremath{\textit{tuple[float, float]}\xspace} \ensuremath{\textit{tuple[float, float]}\xspace} \ensuremath{\textit{tuple[float, float]}\xspace} \ensuremath{\textit{tuple}\xspace} \ensuremath{\textit{tuple}\xspace}\xspace \ensuremath{\textit{tuple}\xspace}\xspace, float\xspace, floa$

 $\texttt{create_mass_symbol_mapping} (\textit{decay: ThreeBodyDecay} (\textit{page 77})) \rightarrow \texttt{dict[Symbol, float]}$

9.4 decay

import polarimetry.decay

Data structures that describe a three-body decay.

```
class Particle (name: str, latex: str, spin: SupportsFloat, parity: Literal[-1, 1], mass: float, width: float)
     Bases: object
     name: str
     latex: str
     spin: Rational
     parity: Literal[-1, 1]
    mass: float
     width: float
class IsobarNode (parent: Particle (page 77), child1: Particle (page 77) | IsobarNode (page 77), child2:
                    Particle (page 77) | IsobarNode (page 77), interaction: LSCoupling (page 78) | tuple[int,
                    SupportsFloat] | None = None)
     Bases: object
     parent: Particle (page 77)
     child1: Particle (page 77) | IsobarNode (page 77)
     child2: Particle (page 77) | IsobarNode (page 77)
     interaction: LSCoupling (page 78) | None
     property children: tuple [Particle (page 77), Particle (page 77)]
class ThreeBodyDecay (states: OuterStates (page 78), chains: tuple[ThreeBodyDecayChain (page 78), ...])
     Bases: object
     states: OuterStates (page 78)
     chains: tuple[ThreeBodyDecayChain (page 78), ...]
    property initial_state: Particle (page 77)
     property final_state: dict[Literal[1, 2, 3], Particle (page 77)]
     find_chain (resonance_name: str) \rightarrow ThreeBodyDecayChain (page 78)
```

 $get_subsystem(subsystem_id: Literal[1, 2, 3]) \rightarrow ThreeBodyDecay(page 77)$

get_decay_product_ids (*spectator_id: Literal*[1, 2, 3]) → tuple[int, int]

OuterStates

```
Mapping of the initial and final state IDs to their Particle (page 77) definition.
alias of Dict[Literal[0, 1, 2, 3], Particle (page 77)]
class ThreeBodyDecayChain (decay: IsobarNode (page 77))
Bases: object
decay: IsobarNode (page 77)
property parent: Particle (page 77)
property resonance: Particle (page 77)
property decay_products: tuple[Particle (page 77), Particle (page 77)]
property spectator: Particle (page 77)
property incoming_ls: LSCoupling (page 78)
property outgoing_ls: LSCoupling (page 78)
class LSCoupling (L: int, S: SupportsFloat)
Bases: object
L: int
```

S: Rational

9.5 dynamics

```
import polarimetry.dynamics
```

Functions for dynamics lineshapes and kinematics.

See also:

Dynamics lineshapes (page 51)

class P (s, mi, mj, **hints)
Bases: UnevaluatedExpression

class Q(s, m0, mk, **hints)
Bases: UnevaluatedExpression

class BreitWignerMinL (s, decaying_mass, spectator_mass, resonance_mass, resonance_width, child2_mass, child1_mass, l_dec, l_prod, R_dec, R_prod)

Bases: UnevaluatedExpression

```
class BuggBreitWigner (s, m0, \Gamma0, m1, m2, \gamma)
```

 $Bases: {\tt UnevaluatedExpression}$

```
class FlattéSWave (s, m0, widths, masses1, masses2)
```

Bases: UnevaluatedExpression

```
class EnergyDependentWidth (s, m0, Γ0, m1, m2, L, R)
Bases: UnevaluatedExpression
```

```
class BlattWeisskopf(z, L, **hints)
Bases: UnevaluatedExpression
```

9.6 function

import polarimetry.function

 $set_parameter_to_zero$ (func: ParametrizedFunction, search_term: Pattern) \rightarrow None

interference_intensity (*func*, *data*, *chain1*: *list*[*str*], *chain2*: *list*[*str*]) → float

sub_intensity (func, data, non_zero_couplings: list[str])

integrate_intensity (*intensities*) → float

9.7 io

import polarimetry.io

Input-output functions for ampform and sympy objects.

Functions in this module are registered with functools.singledispatch() and can be extended as follows:

```
>>> from polarimetry.io import as_latex
>>> @as_latex.register(int)
... def _(obj: int) -> str:
... return "my custom rendering"
>>> as_latex(1)
'my custom rendering'
>>> as_latex(3.4 - 2j)
'3.4-2i'
```

This code originates from ComPWA/ampform#280.

as_latex (obj, **kwargs) \rightarrow str

Render objects as a LaTeX str.

The resulting str can for instance be given to IPython.display.Math.

Optional keywords:

- only_jp: Render a Particle (page 77) as J^P value (spin-parity) only.
- with_jp: Render a *Particle* (page 77) with value J^P value.

as_markdown_table (*obj: Sequence*) \rightarrow str

Render objects a str suitable for generating a table.

display_latex $(obj) \rightarrow None$

 $display_doit(expr: UnevaluatedExpression, deep=False, terms_per_line: int | None = None) \rightarrow None$

perform_cached_doit (*unevaluated_expr: Expr, directory: str* | *None* = *None*) \rightarrow Expr

Perform doit () on an Expr and cache the result to disk.

The cached result is fetched from disk if the hash of the original expression is the same as the hash embedded in the filename.

Parameters

- $\textbf{unevaluated_expr} - A \texttt{sympy.Expr} \textit{ on which to call doit().}$

• **directory** – The directory in which to cache the result. If None, the cache directory will be put under the home directory, or to the path specified by the environment variable SYMPY_CACHE_DIR.

Tip: For a faster cache, set PYTHONHASHSEED to a fixed value.

See also:

perform_cached_lambdify() (page 80)

perform_cached_lambdify (*expr: Expr, parameters: Mapping[Symbol, ParameterValue]* | *None* = *None*, *backend: str* = '*jax*', *directory: str* | *None* = *None*) \rightarrow ParametrizedFunction | Function

Lambdify a SymPy Expr and cache the result to disk.

The cached result is fetched from disk if the hash of the expression is the same as the hash embedded in the filename.

Parameters

- **expr** A sympy.Expr on which to call create_function() or create_parametrized_function().
- **parameters** Specify this argument in order to create a ParametrizedBackend-Function instead of a PositionalArgumentFunction.
- backend The choice of backend for the created numerical function. WARNING: this function has only been tested for backend="jax"!
- **directory** The directory in which to cache the result. If None, the cache directory will be put under the home directory, or to the path specified by the environment variable SYMPY_CACHE_DIR.

Tip: For a faster cache, set PYTHONHASHSEED to a fixed value.

See also:

perform_cached_doit() (page 79)

 $get_readable_hash(obj) \rightarrow str$

 $\texttt{mute_jax_warnings()} \rightarrow None$

export_polarimetry_field (*sigma1: ndarray*, *sigma2: ndarray*, *alpha_x: ndarray*, *alpha_y: ndarray*, *alpha_z: ndarray*, *intensity: ndarray*, *filename: str*, *metadata: dict* | *None* = None) \rightarrow None

import_polarimetry_field (*filename: str, steps: int* = 1) \rightarrow dict[str, ndarray]

9.8 plot

import polarimetry.plot

Helper functions for matplotlib.

add_watermark (ax: Axes, x: float = 0.03, y: float = 0.03, fontsize: int | None = None, **kwargs) \rightarrow None

get_contour_line (*contour_set: QuadContourSet*) → LineCollection

use_mpl_latex_fonts (*reset_mpl: bool* = True) \rightarrow None

stylize_contour (contour_set: QuadContourSet, *, edgecolor=None, label: str | None = None, linestyle: str | None = None, linewidth: float | None = None) \rightarrow None

9.9 spin

import polarimetry.spin

generate_ls_couplings (parent_spin: SupportsFloat, child1_spin: SupportsFloat, child2_spin: SupportsFloat, max_L: int = 3) \rightarrow list[tuple[int, Rational]]

```
>>> generate_ls_couplings(1.5, 0.5, 0)
[(1, 1/2), (2, 1/2)]
```

```
>>> LS = generate_ls_couplings(0.5, 1.5, 0) # Ac → A(1520)π
>>> LS
[(1, 3/2), (2, 3/2)]
>>> filter_parity_violating_ls(LS, +1, -1, -1)
[(2, 3/2)]
```

 $create_spin_range(spin: SupportsFloat) \rightarrow list[Rational]$

```
>>> create_spin_range(1.5)
[-3/2, -1/2, 1/2, 3/2]
```

 $\texttt{create_rational_range} (_\textit{from: SupportsFloat}, _\textit{to: SupportsFloat}) \rightarrow \texttt{list[Rational]}$

```
>>> create_rational_range(-0.5, +1.5)
[-1/2, 1/2, 3/2]
```

Notebook execution times

Document	Modified	Method	Run Time (s)	Status
amplitude-model (page 3)	2023-01-18 12:00	cache	21.62	V
appendix/alignment (page 54)	2023-01-18 12:02	cache	79.29	V
appendix/angles (page 52)	2023-01-04 14:29	cache	3.56	V
appendix/benchmark (page 55)	2023-01-18 12:04	cache	149.07	V
appendix/dynamics (page 51)	2023-01-18 12:04	cache	4.19	V
appendix/homomorphism (page 63)	2023-01-04 14:35	cache	4.66	V
appendix/ls-model (page 60)	2023-01-04 14:40	cache	273.6	V
appendix/phase-space (page 53)	2023-01-18 12:05	cache	48.6	V
appendix/serialization (page 59)	2023-01-18 15:58	cache	123.74	V
appendix/widget (page 70)	2023-01-04 15:02	cache	1188.16	V
cross-check (page 13)	2023-01-18 12:06	cache	45.81	V
intensity (page 21)	2023-01-18 12:14	cache	470.18	V
polarimetry (page 27)	2023-01-04 15:19	cache	426.89	V
resonance-polarimetry (page 43)	2023-01-18 13:11	cache	3450.05	V
uncertainties (page 31)	2023-01-11 17:15	cache	927.81	V
zz.polarization-fit (page 64)	2023-01-04 17:52	cache	396.85	V

BIBLIOGRAPHY

- [1] LHCb Collaboration *et al.* Amplitude analysis of $\Lambda_c^+ \to pK^-\pi^+$ decays from semileptonic production. *Phys. Rev. D*, 2022. doi:10.48550/arXiv.2208.03262.
- [2] M. Mikhasenko *et al.* Dalitz-plot decomposition for three-body decays. *Phys. Rev. D*, 101(3):034033, February 2020. doi:10.1103/PhysRevD.101.034033.
- [3] J. F. Cornwell. *Group Theory in Physics: An Introduction*. Academic Press, San Diego, CA, 1997. ISBN:978-0-12-189800-7.

PYTHON MODULE INDEX

р

polarimetry, 73
polarimetry.amplitude, 73
polarimetry.amplitude.angles, 74
polarimetry.data, 76
polarimetry.decay, 77
polarimetry.dynamics, 78
polarimetry.function, 79
polarimetry.lhcb, 74
polarimetry.lhcb.dynamics, 76
polarimetry.lhcb.particle, 76
polarimetry.plot, 80
polarimetry.spin, 81

INDEX

Α

add_watermark() (in module polarimetry.plot), 80 AmplitudeModel (class in polarimetry.amplitude), 73 amplitudes (AmplitudeModel attribute), 73 as_latex() (in module polarimetry.io), 79 as_markdown_table() (in module polarimetry.io), 79

B

BlattWeisskopf (class in polarimetry.dynamics), 78 BreitWignerMinL (class in polarimetry.dynamics), 78

BuggBreitWigner (class in polarimetry.dynamics), 78

С

- chains (ThreeBodyDecay attribute), 77
- child1 (IsobarNode attribute), 77
- child2 (IsobarNode attribute), 77
- children (IsobarNode property), 77
- compute_dalitz_boundaries() (in module polarimetry.data), 77
- compute_decay_couplings() (in module polarimetry.lhcb), 75
- compute_sub_function() (in module polarimetry.function), 79
- create_data_transformer() (in module polarimetry.data), 76
- create_distribution() (ParameterBootstrap method), 75
- create_mass_symbol_mapping() (in module polarimetry.data), 77
- create_phase_space_filter() (in module polarimetry.data), 76
- create_rational_range() (in module polarimetry.spin), 81
- create_spin_range() (in module polarimetry.spin), 81

D

- DalitzPlotDecompositionBuilder (class in polarimetry.amplitude), 73 decay (AmplitudeModel attribute), 73
- decay (DynamicsConfigurator property), 74
- decay (ThreeBodyDecayChain attribute), 78

- decay_products (ThreeBodyDecayChain property), 78
- display_doit() (in module polarimetry.io), 79 display_latex() (in module polarimetry.io), 79 DynamicsBuilder (class in polarimetry.amplitude), 74
- DynamicsConfigurator (class in polarimetry.amplitude), 73

E

- EnergyDependentWidth (class in polarimetry.dynamics), 78
- export_polarimetry_field() (in module polarimetry.io), 80
- extract_particle_definitions() (in module polarimetry.lhcb), 75

F

- filter_parity_violating_ls() (in module polarimetry.spin), 81
- final_state (ThreeBodyDecay property), 77
- find_chain() (ThreeBodyDecay method), 77
- FlattéSWave (class in polarimetry.dynamics), 78
- flip_production_coupling_signs() (in module polarimetry.lhcb), 75
- (DalitzPlotDecompositionBuilder formulate() method), 73
- formulate_aligned_amplitude() (DalitzPlot-DecompositionBuilder method), 73
- formulate_breit_wigner() (in module polarimetry.lhcb.dynamics), 76
- formulate_bugg_breit_wigner() (in module polarimetry.lhcb.dynamics), 76
- formulate_exponential_bugg_breit_wigner() (in module polarimetry.lhcb.dynamics), 76
- formulate_flatte_1405() (in module polarimetry.lhcb.dynamics), 76
- formulate_polarimetry() (in module polarimetry), 73
- formulate_scattering_angle() (in module polarimetry.amplitude.angles), 74
- formulate_subsystem_amplitude() (Dalitz-PlotDecompositionBuilder method), 73
- formulate_theta_hat_angle() (in module polarimetry.amplitude.angles), 74

formulate_zeta_angle() (in module polarimetry.amplitude.angles), 74

full_expression (AmplitudeModel property), 73

G

- generate_ls_couplings() (in module polarimetry.spin), 81
- generate_meshgrid_sample() (in module polarimetry.data), 76
- generate_sub_meshgrid_sample() (in module polarimetry.data), 76
- get_builder() (DynamicsConfigurator method), 74
- get_conversion_factor() (in module polarimetry.lhcb), 75
- get_conversion_factor_ls() (in module polarimetry.lhcb), 75
- get_decay_product_ids() (in module polarimetry.decay), 78
- get_indexed_base() (in module polarimetry.amplitude), 73

get_subsystem() (ThreeBodyDecay method), 77

Η

hesse (MeasuredParameter attribute), 75

I

import_polarimetry_field() (in module polarimetry.io), 80 incoming_ls (ThreeBodyDecayChain property), 78 initial_state (ThreeBodyDecay property), 77 integrate_intensity() (in module polarimetry.function), 79 intensity (AmplitudeModel attribute), 73 interaction (IsobarNode attribute), 77 interference_intensity() (in module polarimetry.function), 79

IsobarNode (class in polarimetry.decay), 77

J

jp (ResonanceJSON attribute), 76

L

L (LSCoupling attribute), 78 latex (Particle attribute), 77 latex (ResonanceJSON attribute), 76 load_model_builder() (in module polarimetry.lhcb), 74 load_model_parameters() (in module polarimetry.lhcb), 75 load_model_parameters_with_uncertaintiqmo(Darimetry.amplitude.angles (in module polarimetry.lhcb), 75 module, 73 load_model_parameters_with_uncertaintiqmo(Darimetry.amplitude.angles (in module polarimetry.lhcb), 75 module, 74

load_particles() (in module polarimetry.lhcb.particle), 76

load_three_body_decay() (in module polarimetry.lhcb), 74

LSCoupling (class in polarimetry.decay), 78

Μ

```
mass (Particle attribute), 77
mass (ResonanceJSON attribute), 76
MeasuredParameter (class in polarimetry.lhcb), 75
model (MeasuredParameter attribute), 75
module
    polarimetry, 73
    polarimetry.amplitude,73
    polarimetry.amplitude.angles,74
    polarimetry.data,76
    polarimetry.decay,77
    polarimetry.dynamics,78
    polarimetry.function,79
    polarimetry.io,79
    polarimetry.lhcb,74
    polarimetry.lhcb.dynamics,76
    polarimetry.lhcb.particle,76
    polarimetry.plot,80
    polarimetry.spin,81
mute_jax_warnings() (in module polarimetry.io),
```

```
_
```

Ν

name (Particle attribute), 77

80

0

OuterStates (in module polarimetry.decay), 78
outgoing_ls (ThreeBodyDecayChain property), 78

Ρ

```
P (class in polarimetry.dynamics), 78
parameter_defaults (AmplitudeModel attribute),
        73
parameter_key_to_symbol() (in module po-
        larimetry.lhcb), 75
ParameterBootstrap (class in polarimetry.lhcb),
        74
ParameterType (in module polarimetry.lhcb), 75
parent (IsobarNode attribute), 77
parent (ThreeBodyDecayChain property), 78
parity (Particle attribute), 77
Particle (class in polarimetry.decay), 77
perform_cached_doit() (in module polarime-
        try.io), 79
perform_cached_lambdify() (in module po-
        larimetry.io), 80
polarimetry
    module,73
polarimetry.amplitude
    module,73
    module,74
```

polarimetry.data module,76 polarimetry.decay module,77 polarimetry.dynamics module,78 polarimetry.function module, 79 polarimetry.io module, 79 polarimetry.lhcb module,74 polarimetry.lhcb.dynamics module,76 polarimetry.lhcb.particle module, 76 polarimetry.plot module, 80 polarimetry.spin module, 81

Q

Q (class in polarimetry.dynamics), 78

R

register_builder() (DynamicsConfigurator method), 74 resonance (ThreeBodyDecayChain property), 78 ResonanceJSON (class in polarimetry.lhcb.particle), 76

S

systematic (MeasuredParameter attribute), 75

Т

ThreeBodyDecay (*class in polarimetry.decay*), 77 ThreeBodyDecayChain (*class in polarimetry.decay*), 78

U

uncertainties (ParameterBootstrap property), 75
uncertainty (MeasuredParameter property), 75
use_mpl_latex_fonts() (in module polarimetry.plot), 80

V

value (*MeasuredParameter attribute*), 75 values (*ParameterBootstrap property*), 74 variables (*AmplitudeModel attribute*), 73

W

width (*Particle attribute*), 77 width (*ResonanceJSON attribute*), 76